说明:

Dijkstra算法是处理单源最短路径的有效算法,但它局限于边的权值非负的情况,若图中出现权值为负的边,Dijkstra算法就会失效,求出的最短路径就可能是错的。

这时候,就需要使用其他的算法来求解最短路径,Bellman-Ford算法就是其中最常用的一个。

适用条件&范围:

单源最短路径(从源点s到其它所有顶点v);

有向图&无向图(无向图可以看作(u,v),(v,u)同属于边集E的有向图);

边权可正可负(如有负权回路输出错误提示);

思想:

  我们规定节点都有一个key值,key值记录的是开始节点到本节点的最小距离,每个节点也都有一个p指针指向他的前驱节点。这里我们规定一个操作叫做松弛操作,我们的算法也是最终基于这个操作的。松弛操作就是去更新key的值。

节点B的key值为8,表示从开始节点到B节点之前的最短估计距离是8,而节点A的key值3,是说从开始节点到A节点最短估计是3,当我们发现这个边时,从A到B的距离比较近,所以我们去更新B的key值,同时把B的前驱节点设置成A。这个过程就是松弛操作。

  我们说的Bellman-Ford算法是最简单的算法,就是从开始节点开始循环每一条边,对他进行松弛操作。最后得到的路径就是最短路径。过程如图:

算法步骤:

1.初始化:将除源点外的所有顶点的最短距离估计值 d[v] ← +∞, d[s] ←0;
2.迭代求解:反复对边集E中的每条边进行松弛操作,使得顶点集V中的每个顶点v的最短距离估计值逐步逼近其最短距离;(运行|v|-1次)
3.检验负权回路:判断边集E中的每一条边的两个端点是否收敛。如果存在未收敛的顶点,则算法返回false,表明问题无解;否则算法返回true,并且从源点可达的顶点v的最短距离保存在 d[v]中。

代码:

#include<iostream>
#include<cstdio>
using namespace std;
#define MAX 0x3f3f3f3f
#define N 1010
int nodenum, edgenum, original; //点,边,起点
typedef struct Edge //边
{
int u, v;
int cost;
} Edge;
Edge edge[N];
int dis[N], pre[N];
bool Bellman_Ford()
{
int ok;
for(int i = ; i <= nodenum; ++i) //初始化,起点本身赋值为0,其余赋值为最大
dis[i] = (i == original ? : MAX);
for(int i = ; i <= nodenum - ; ++i)
{
ok=;
for(int j = ; j <= edgenum; ++j)
if(dis[edge[j].v] > dis[edge[j].u] + edge[j].cost) //松弛(顺序一定不能反)
{
dis[edge[j].v] = dis[edge[j].u] + edge[j].cost;
pre[edge[j].v] = edge[j].u;//这里用来存储路径
ok=;
}
if(ok==) //优化这里,如果这趟没跟新任何节点就可以直接退出了。
break;
}
bool flag = ; //判断是否含有负权回路
for(int i = ; i <= edgenum; ++i)
if(dis[edge[i].v] > dis[edge[i].u] + edge[i].cost)
{
flag = ;
break;
}
return flag;
} void print_path(int root) //打印最短路的路径(反向)
{
while(root != pre[root]) //前驱
{
printf("%d-->", root);
root = pre[root];
}
if(root == pre[root])
printf("%d\n", root);
} int main()
{
scanf("%d%d%d", &nodenum, &edgenum, &original);//输入点边起点,一般起点规定为1
pre[original] = original;//为了输出最短路用的,前驱为本身
for(int i = ; i <= edgenum; ++i)
{
scanf("%d%d%d", &edge[i].u, &edge[i].v, &edge[i].cost);//有向图
}
if(Bellman_Ford())//如果没有负权
for(int i = ; i <= nodenum; ++i) //每个点最短路
{
printf("%d\n", dis[i]);
printf("Path:");
print_path(i);
}
else
printf("have negative circle\n");
return ;
}

最短路之Bellman-Ford算法的更多相关文章

  1. Bellman—Ford算法思想

    ---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G ...

  2. Bellman - Ford 算法解决最短路径问题

    Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...

  3. Dijkstra算法与Bellman - Ford算法示例(源自网上大牛的博客)【图论】

    题意:题目大意:有N个点,给出从a点到b点的距离,当然a和b是互相可以抵达的,问从1到n的最短距离 poj2387 Description Bessie is out in the field and ...

  4. poj1860 bellman—ford队列优化 Currency Exchange

    Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 22123   Accepted: 799 ...

  5. uva 558 - Wormholes(Bellman Ford判断负环)

    题目链接:558 - Wormholes 题目大意:给出n和m,表示有n个点,然后给出m条边,然后判断给出的有向图中是否存在负环. 解题思路:利用Bellman Ford算法,若进行第n次松弛时,还能 ...

  6. ACM/ICPC 之 最短路径-Bellman Ford范例(POJ1556-POJ2240)

    两道Bellman Ford解最短路的范例,Bellman Ford只是一种最短路的方法,两道都可以用dijkstra, SPFA做. Bellman Ford解法是将每条边遍历一次,遍历一次所有边可 ...

  7. Til the Cows Come Home 最短路Dijkstra+bellman(普通+优化)

    Til the Cows Come Home 最短路Dijkstra+bellman(普通+优化) 贝西在田里,想在农夫约翰叫醒她早上挤奶之前回到谷仓尽可能多地睡一觉.贝西需要她的美梦,所以她想尽快回 ...

  8. 算法学习笔记(三) 最短路 Dijkstra 和 Floyd 算法

    图论中一个经典问题就是求最短路.最为基础和最为经典的算法莫过于 Dijkstra 和 Floyd 算法,一个是贪心算法,一个是动态规划.这也是算法中的两大经典代表.用一个简单图在纸上一步一步演算,也是 ...

  9. 图论算法——最短路径Dijkstra,Floyd,Bellman Ford

    算法名称 适用范围 算法过程 Dijkstra 无负权 从s开始,选择尚未完成的点中,distance最小的点,对其所有边进行松弛:直到所有结点都已完成 Bellman-Ford 可用有负权 依次对所 ...

  10. 蓝桥杯 algo_5 最短路 (bellman,SPFA)

    问题描述 给定一个n个顶点,m条边的有向图(其中某些边权可能为负,但保证没有负环).请你计算从1号点到其他点的最短路(顶点从1到n编号). 输入格式 第一行两个整数n, m. 接下来的m行,每行有三个 ...

随机推荐

  1. UE4 Run On owing Client解析(RPC测试)

    今天看到文档中游戏性指南->远程调用函数->在蓝图中使用远程调用函数的 Run On Owning Client 在所有权的客户端上运行部分,发现把Add Item和Remove Item ...

  2. react-native 学习 ----- React Navigation

    很久没有的登陆博客园了,密码都是找回的,从当年的大学生已经正常的走上了程序员的道路,看到之前发的博客还是写的android,现在自己已经在使用了react-native了. 大学毕业了,做了java后 ...

  3. Tomcat7的热部署

    所谓热部署就是在tomcat不停机的情况下,将新的war包放上去,达到服务不中断,用户无察觉的目的,实现的原理很简单,这里做下记录,以便后期查看. 1.1 安装tomcat7 略 1.2 在tomca ...

  4. Java垃圾回收总结

    基本概念 垃圾回收器(Garbage Collector )是JVM非常重要的一个组成部分,主要用于自动化的内存管理.相比手动的内存管理,自动化的内存管理大大简化了程序员的开发难度并且更加安全,避免了 ...

  5. Mybatis中使用 #{} 和 ${} 向sql传参时的区别

    今天在工作时,使用MyBatis中向sql传递两个参数时,一直显示SQL语法错误,仔细检查,才发现传入的参数被加上了引号,导致传入的参数(要传入的参数是表名)附近出现语法错误. 错误写法: } a } ...

  6. 2.如何搭建MQTT环境

    1.源码下载https://github.com/andsel/moquette 注意下载2016.2版本2.idea下载http://confluence.jetbrains.com/display ...

  7. Android开发随手记

    本文是作者在Android开发实践中的随手速记,记录一些小问题的解决方案和注意事项,持续更新. 以下是速记内容,若有不严谨的地方,望小伙伴们指出. 1.Module 不生成R文件,可尝试取消对该Mod ...

  8. 前端解读Webview

    作为盛行已久的开发方式,Hybrid的相关介绍已经是相当普遍了.不过看到博客园里基本上都是从android或者ios的角度来讲解的,对于h5的前端来说看起来只能是一直半解.感觉有必要从前端的角度来理解 ...

  9. 【ESP8266】发送HTTP请求

    一.ESP8266简介 ESP8266 是深圳安信可科技有限公司开发的基于乐鑫ESP8266的超低功耗的UART-WIFI模块的模组,可以方便进行二次元开发,接入云端服务,实现手机3/4G全球随时随地 ...

  10. Angular路由(三)

    AngularJs ng-route路由详解 其实主要是$routeProvider搭配ng-view实现. ng-view的实现原理,基本就是根据路由的切换,动态编译html模板. 前提 首先必须在 ...