bzoj 4813: [Cqoi2017]小Q的棋盘
Description
Input
Output
Sample Input
1 0
2 1
3 2
4 3
Sample Output
从格点 0 出发移动 2 步。经过 0, 1, 2 这 3 个格点。
HINT
Source
树型DP。。。
设f[i][j]表示从i点出发走j步不走会i点的最多的点数。。
设dp[i][j]表示从i点出发走j步并且回到i的最多的点数。。
f[x][j]可以有三种转移:
1.f[x][j]=dp[x][j-k-1]+dp[y][k]
2.f[x][j]=dp[x][j-k-1]+f[y][k]
3.f[x][j]=dp[y][k]+f[x][j-k-2](这个有点小坑。。。)
然后dp[x][j]就是一种转移
然后直接大力树型背包。。。注意枚举到K,不然会WA。。。
// MADE BY QT666
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<iostream>
#include<cstring>
using namespace std;
typedef long long ll;
const int N=3000;
int head[N],to[N],nxt[N],cnt;
int f[N][N],dp[N][N],n,K,size[N];
void lnk(int x,int y){
to[++cnt]=y,nxt[cnt]=head[x],head[x]=cnt;
to[++cnt]=x,nxt[cnt]=head[y],head[y]=cnt;
}
void dfs(int x,int fa){
size[x]=1;dp[x][0]=1;
for(int i=head[x];i;i=nxt[i]){
int y=to[i];if(y==fa) continue;
dfs(y,x);size[x]+=size[y];
for(int j=K;j>=0;j--){
for(int k=0;k<=j;k++){
if(j-k>=1) f[x][j]=max(f[x][j],dp[x][j-k-1]+dp[y][k]);
if(j-k>=1) f[x][j]=max(f[x][j],dp[x][j-k-1]+f[y][k]);
if(j-k>=2) f[x][j]=max(f[x][j],dp[y][k]+f[x][j-k-2]);
if(j-k>=2) dp[x][j]=max(dp[x][j],dp[x][j-k-2]+dp[y][k]);
}
}
}
for(int i=1;i<=K;i++) f[x][i]=max(f[x][i],f[x][i-1]),dp[x][i]=max(dp[x][i],dp[x][i-1]);
}
int main(){
freopen("1.in","r",stdin);
freopen("1.out","w",stdout);
scanf("%d%d",&n,&K);int x,y;
for(int i=1;i<n;i++) scanf("%d%d",&x,&y),lnk(x+1,y+1);
dfs(1,0);printf("%d\n",max(f[1][K],dp[1][K]));
return 0;
}
bzoj 4813: [Cqoi2017]小Q的棋盘的更多相关文章
- bzoj 4813: [Cqoi2017]小Q的棋盘 [树形背包dp]
4813: [Cqoi2017]小Q的棋盘 题意: 某poj弱化版?树形背包 据说还可以贪心... #include <iostream> #include <cstdio> ...
- bzoj 4813: [Cqoi2017]小Q的棋盘【树形dp】
这么简单的dp我怎么没想到x2 f为从这个点出发后回到这个点最多能走过的点,g为从这个点出发后不回到这个点最多能走过的点,注意g有两种转移:g[u][k]=max(g[u][k],f[u][k-j-1 ...
- 【BZOJ】 4813: [Cqoi2017]小Q的棋盘
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4813 暴力转移就好,考虑以某一个点为根的子树分为是否走回来两种情况 ${f_{i,j}}$ ...
- BZOJ 1813 [Cqoi2017]小Q的棋盘 ——树形DP
唔,貌似以前做过这样差不多的题目. 用$f(i,0/1)$表示从某一点出发,只能走子树的情况下回到根.不回到根的最多经过不同的点数. 然后就可以DP辣 #include <map> #in ...
- [BZOJ4813][CQOI2017]小Q的棋盘(DP,贪心)
4813: [Cqoi2017]小Q的棋盘 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 804 Solved: 441[Submit][Statu ...
- BZOJ_4813_[Cqoi2017]小Q的棋盘_dfs
BZOJ_4813_[Cqoi2017]小Q的棋盘_dfs Description 小Q正在设计一种棋类游戏.在小Q设计的游戏中,棋子可以放在棋盘上的格点中.某些格点之间有连线,棋子只能 在有连线的格 ...
- 洛谷 P3698 [CQOI2017]小Q的棋盘 解题报告
P3698 [CQOI2017]小Q的棋盘 题目描述 小 Q 正在设计一种棋类游戏. 在小 Q 设计的游戏中,棋子可以放在棋盘上的格点中.某些格点之间有连线,棋子只能在有连线的格点之间移动.整个棋盘上 ...
- 【BZOJ4813】[CQOI2017]小Q的棋盘(贪心)
[BZOJ4813][CQOI2017]小Q的棋盘(贪心) 题面 BZOJ 洛谷 题解 果然是老年选手了,这种题都不会做了.... 先想想一个点如果被访问过只有两种情况,第一种是进入了这个点所在的子树 ...
- bzoj 4815: [Cqoi2017]小Q的表格 [数论]
4815: [Cqoi2017]小Q的表格 题意: 单点修改,查询前缀正方形和.修改后要求满足条件f(a,b)=f(b,a), b×f(a,a+b)=(a+b)*f(a,b) 一开始sb了认为一次只会 ...
随机推荐
- debug断点调试
debug断点调试 1,虫子启动2,F6 执行断点的下一步,下一个语句 F5 进入方法 F8 执行到结束 查看表达式的值:选中查看的表达式,接着按 ctrl ...
- 2723:不吉利日期-poj
2723:不吉利日期 总时间限制: 1000ms 内存限制: 65536kB 描述 在国外,每月的13号和每周的星期5都是不吉利的.特别是当13号那天恰好是星期5时,更不吉利.已知某年的一月一日是 ...
- 02-线性结构4 Pop Sequence
题目 Sample Input: 5 7 5 1 2 3 4 5 6 7 3 2 1 7 5 6 4 7 6 5 4 3 2 1 5 6 4 3 7 2 1 1 7 6 5 4 3 2 Sample ...
- 深入了解Android蓝牙Bluetooth——《进阶篇》
在 [深入了解Android蓝牙Bluetooth--<基础篇>](http://blog.csdn.net/androidstarjack/article/details/6046846 ...
- 洛谷银牛派对SPFA
题目描述 One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the b ...
- redis在Linux上的安装和简单使用
一.官方文档介绍方式 这里演示的版本是Redis4.0.6,Linux系统是CentOS6.7,Jdk1.7,Jedis2.8.1 下载,解压,编译: $ wget http://download.r ...
- [WPF]本地化入门
1. 前言 WPF的本地化是个很常见的功能,我做过的WPF程序大部分都实现了本地化(不管最终有没有用到).通常本地化有以下几点需求: 在程序启动时根据CultureInfo.CurrentUICult ...
- 第四届河南省ACM 序号互换 进制转换
序号互换 时间限制: 1 Sec 内存限制: 128 MB 提交: 41 解决: 19 [提交][状态][讨论版] 题目描述 Dr.Kong设计了一个聪明的机器人卡多,卡多会对电子表格中的单元格坐 ...
- WireShark 使用
1.干货 Wireshark(前称Ethereal)是一个网络封包分析软件.网络封包分析软件的功能是撷取网络封包,并尽可能显示出最为详细的网络封包资料.Wireshark使用WinPCAP作为接口,直 ...
- 开源纯C#工控网关+组态软件(七)数据采集与归档
一. 引子 在当前自动化.信息化.智能化的时代背景下,数据的作用日渐凸显.而工业发展到如今,科技含量和自动化水平均显著提高,但对数据的采集.利用才开始起步. 对工业企业而言,数据采集日益受到重视, ...