蓝桥杯-算法训练--ALGO-5 最短路
给定一个n个顶点,m条边的有向图(其中某些边权可能为负,但保证没有负环)。请你计算从1号点到其他点的最短路(顶点从1到n编号)。
第一行两个整数n, m。
接下来的m行,每行有三个整数u, v, l,表示u到v有一条长度为l的边。
1 2 -1
2 3 -1
3 1 2
-2
对于10%的数据,n = 2,m = 2。
对于30%的数据,n <= 5,m <= 10。
对于100%的数据,1 <= n <= 20000,1 <= m <= 200000,-10000 <= l <= 10000,保证从任意顶点都能到达其他所有顶点。
#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
const int MAXN = ;
int floyd[MAXN][MAXN];
int main(){
int m, n;
memset(floyd, , sizeof(floyd));
cin >> m >> n;
for (int i = ; i <= m; i++){
int from, to, value;
cin >> from >> to >> value;
floyd[from][to] = value;
}
for (int j = ; j <= n; j++)
for (int k = ; k <= n; k++){
if (floyd[][k] + floyd[k][j] < floyd[][j])
floyd[][j] = floyd[][k] + floyd[k][j];
}
for (int m = ; m <= n; m++)
cout << floyd[][m] << endl;
return ;
}
上网查了一下发现SPFA算法,利用队列优化了一下。
SPFA(Shortest Path Faster Algorithm)(队列优化)算法是求单源最短路径的一种算法,它还有一个重要的功能是判负环(在差分约束系统中会得以体现),在Bellman-ford算法的基础上加上一个队列优化,减少了冗余的松弛操作,是一种高效的最短路算法。
算法大致思路:
s表示源点
利用dist[x]表示从源点s到x的最短距离
用Q队列来保存需要处理的结点
用inQueue[x]保存点x是否在队列中
初始化:dist[]数组全部赋值为无穷大,比如INT_MAX(一定要足够大, 我一开始就是给小了所以有些数据错了)
dist[s] = 0
开始算法:队列+松弛操作
读取Q队首元素并出队(记得把inQueue[Q.top()]置为false)
对与队首结点相连的所有点v进行松弛操作(如果源点通过队首结点再到结点v的距离比源点直接到v的距离要短,就更新dist[v],并且如果inQueue[v] == false 即V当前不在队列中,则v入队,当队列Q为空时,判断结束)
代码如下:
#include<cstdio>
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
const int MAXN = ;
const int MAXL = ;
const int INF = INT_MAX;
int dist[MAXN]; //dist[x]表示从源点到x所需的最短距离,初始为INF
int head[MAXN];
int M; //边的索引
bool inQueue[MAXN];
queue<int> Q; //队列Q用来存放可松弛周围结点的结点
struct Edge{
int value;
int to;
int next;
}edge[MAXL]; //采用链式前向星存储边集 //构建边集合
void add(int from, int to, int value){
edge[M].to = to;
edge[M].next = head[from];
edge[M].value = value;
head[from] = M++;
} //SPFA算法
void SPFA(int start){
dist[start] = ; //源点到自己的距离为0
Q.push(start);
inQueue[start] = true;
while (!Q.empty()){
int temp = Q.front(); //取队头元素
Q.pop();
for (int j = head[temp]; j != -; j = edge[j].next){
int toNode = edge[j].to;
if (dist[toNode] > dist[temp] + edge[j].value){ //本题保证无负环,否则需要利用一个数组判断j是否入队超过n次
dist[toNode] = dist[temp] + edge[j].value;
if (!inQueue[toNode]){
Q.push(toNode);
inQueue[toNode] = true;
}
}
}
inQueue[temp] = false;
}
}
int main(){
memset(head, -, sizeof(head));
int n, m;
scanf("%d%d", &n, &m);
for (int i = ; i <= n; i++){ //初始化
dist[i] = INF;
inQueue[i] = false;
}
for (int p = ; p <= m; p++){
int from, to, value;
scanf("%d%d%d", &from, &to, &value); //用cin速度好像要慢一倍= =
add(from, to, value);
}
SPFA();
for (int x = ; x <= n; x++){
printf("%d\n", dist[x]);
}
return ;
}
蓝桥杯-算法训练--ALGO-5 最短路的更多相关文章
- 蓝桥杯 算法训练 最短路 [ 最短路 bellman ]
传送门 算法训练 最短路 时间限制:1.0s 内存限制:256.0MB 锦囊1 锦囊2 锦囊3 问题描述 给定一个n个顶点,m条边的有向图(其中某些边权可能为负,但保证 ...
- Java实现 蓝桥杯 算法训练 猴子吃包子(暴力)
试题 算法训练 猴子吃包子 问题描述 从前,有一只吃包子很厉害的猴子,它可以吃无数个包子,但是,它吃不同的包子速度也不同:肉包每秒钟吃x个:韭菜包每秒钟吃y个:没有馅的包子每秒钟吃z个:现在有x1个肉 ...
- Java实现蓝桥杯 算法训练 大等于n的最小完全平方数
试题 算法训练 大等于n的最小完全平方数 资源限制 时间限制:1.0s 内存限制:256.0MB 问题描述 输出大等于n的最小的完全平方数. 若一个数能表示成某个自然数的平方的形式,则称这个数为完全平 ...
- 蓝桥杯算法训练 java算法 表达式求值
问题描述 输入一个只包含加减乖除和括号的合法表达式,求表达式的值.其中除表示整除. 输入格式 输入一行,包含一个表达式. 输出格式 输出这个表达式的值. 样例输入 1-2+3*(4-5) 样例输出 - ...
- java实现 蓝桥杯 算法训练 Password Suspects
问题描述 在年轻的时候,我们故事中的英雄--国王 Copa--他的私人数据并不是完全安全地隐蔽.对他来说是,这不可接受的.因此,他发明了一种密码,好记又难以破解.后来,他才知道这种密码是一个长度为奇数 ...
- 蓝桥杯 算法训练 Torry的困惑(基本型)(水题,筛法求素数)
算法训练 Torry的困惑(基本型) 时间限制:1.0s 内存限制:512.0MB 问题描述 Torry从小喜爱数学.一天,老师告诉他,像2.3.5.7……这样的数叫做质数.Torry突 ...
- 蓝桥杯 算法训练 区间k大数查询(水题)
算法训练 区间k大数查询 时间限制:1.0s 内存限制:256.0MB 问题描述 给定一个序列,每次询问序列中第l个数到第r个数中第K大的数是哪个. 输入格式 第一行包含一个数n,表示序列长度. ...
- 蓝桥杯--算法训练 区间k大数查询
算法训练 区间k大数查询 时间限制:1.0 ...
- 蓝桥杯 算法训练 ALGO-116 最大的算式
算法训练 最大的算式 时间限制:1.0s 内存限制:256.0MB 问题描述 题目很简单,给出N个数字,不改变它们的相对位置,在中间加入K个乘号和N-K-1个加号,(括号随便加)使最终结果尽量 ...
- 蓝桥杯算法训练 区间k大数查询
算法训练 区间k大数查询 问题描述 给定一个序列,每次询问序列中第l个数到第r个数中第K大的数是哪个. 输入格式 第一行包含一个数n,表示序列长度. 第二行包含n个正整数,表示给定的序列. 第三个 ...
随机推荐
- nmap扫描某段网络连通性
nmap -v -sP 10.0.10.0/24 进行ping扫描,打印出对扫描做出响应的主机,不做进一步测试(如端口扫描或者操作系统探测): nmap -sP 192.168.1.0/24 仅列出指 ...
- 深入理解计算机系统chapter1
---恢复内容开始--- 预处理器+编译器+汇编器+链接器=编译系统 运行hello程序 操作系统: 无论是在单核还是多核系统中,一个CPU看上去都在并发的执行多个进程,这是通过处理器在进程间切换来实 ...
- 关于xamarin.forms 中 list 的loadmore
前言 最近几天在研究上拉加载啊,下拉刷新啊什么的.然而坑爹的事情总是那么多.在xamarin.forms中,list自带的,并没有上拉加载的这个属性(难道当初他们封装方法时,就不会想到数据多了会咋整吗 ...
- RobotFramework自动化测试框架-移动手机自动化测试Click A Point关键字的使用
Click A Point关键字用来模拟点击APP界面上的一个点,该关键字接收两个三个参数[ x=0 | y=0 | duration=100 ],x和y代表的是点的坐标位置,duration代表的是 ...
- FPGA IN 金融领域
何为金融: 金融指货币的发行.流通和回笼,贷款的发放和收回,存款的存入和提取,汇兑的往来等经济活动.金融(FIN)就是对现有资源进行重新整合之后,实现价值和利润的等效流通. 金融主要包括银行.证券.基 ...
- 第七章 DAO模式
第七章 DAO模式 一.JDBC的封装 1.JDBC的封装: DAO位于业务逻辑和持久化数据之间,实现对持久化数据的访问.将数据库都封装起来,对外提供相应的接口 2.DAO模式的作用: 1.隔离业务逻 ...
- 关于SEO的一些见解---关键词的选取布局以及内外链的建设
前言 SEO是英文 Search EngineOptimiation的缩写,中文翻译为"搜索引擎优化"简单地说, SEO就是从搜索引擎上获得流量的技术 . 搜索引掌优化的主 ...
- 用FastDFS一步步搭建文件管理系统
一.FastDFS介绍 FastDFS开源地址:https://github.com/happyfish100 参考:分布式文件系统FastDFS设计原理 参考:FastDFS分布式文件系统 个人封装 ...
- 成为一名Java高级工程师你需要学什么
宏观上: 1.技术广度方面至少要精通多门开源技术吧,研究过struts\spring等的源码.2.项目经验方面从头到尾跟过几个大项目,头是指需求阶段,包括需求调研.尾是指上线交付之后,包括维护阶段.3 ...
- LINUX 笔记-top命令
top命令经常用来监控linux的系统状况,比如cpu.内存的使用. top - :: up day, :, users, load average: 0.00, 0.01, 0.00 Tasks: ...