爬取朋友圈,Get年度关键词
人生苦短,我用Python && C#。

1.引言
最近初学Python,写爬虫上瘾。爬了豆瓣练手,又爬了公司的论坛生成词云分析年度关键词。最近琢磨着2017又仅剩两月了,我的年度关键词是啥?
所以自然想到爬取下自己的微信朋友圈,来个词频分析,生成属于自己的年度关键词词云。
朋友圈的爬取是非常有难度的,因为微信根本没有暴露API入口去爬取数据。
但它山之石,可以攻玉。
通过各种搜索发现,已经有第三方工具可以做到朋友圈的导出。其中微信公众号【出书啦】就提供了这样一种服务,支持朋友圈导出,并排版生成微信书。
而对朋友圈的爬取就是基于【出书啦】爬取朋友圈后生成网页后的二次爬取。
有点爬虫经验的,只要拿到导出朋友圈的URL,后面的爬虫就不足为道了。但本着分享和总结的精神,还是和大家娓娓道来。
=文中涉及个人隐私内容做了特殊处理=
2.获取朋友圈数据入口
上面已经介绍过了朋友圈的数据爬取是基于【出书啦】微信公众号生成的在线微信书数据的二次爬取。
具体步骤很简单:
- 关注【出书啦】微信公众号
- 点击【创作书籍】-->【微信书】-->【开始制作】-->【添加随机分配的出书啦小编为好友即可】
- 稍等片刻,微信书制作完毕,会收到小编发送的消息提醒,如下图所示。

点击上图的链接,我们就可以看到按照月份重新排版的朋友圈数据,如下图所示:

至此,我们拿到朋友圈的数据入口——【出书啦】排版生成的微信书链接。
写过爬虫的,后面就可以直接略过了。
当然,没写过爬虫也不想动手的,也可以把【出书啦】生成的微信书链接留言或私信给我,我帮你获取年度关键词。
3.环境准备
本文所写爬虫基于python2.7 + scrapy + jieba + wordcloud,使用VS Code IDE。
4.生成爬虫项目
第一步:命令行执行scrapy startproject weixin_moment,生成Scrapy爬虫项目。
第二步:进入创建的weixin_moment目录,执行scrapy genspider 'moment' 'chushu.la' 创建朋友圈爬虫。
执行以上两步后的文件夹结构如下:

5.分析数据源
数据的准确抓取,需要对数据源进行准确分析。这一步我们就要来分析【出书啦】生成的微信书链接的数据加载方式。老规矩,F12开发者工具用起来。

从上图我们可以看出这是一个get请求,返回的json类型格式数据。
点击Preview页签可以看到如下图所示的数据:

从图中可以看到返回的目录导航数据包,其数据是按月份进行加载的。当点击导航按钮,其加载对应月份的朋友圈数据。

我们点击【2014-3】再观察网络请求,发现如下请求:

从以上数据我们可以明细看出,其采用的是用json传参的post的方式请求数据包。点击Preview页签,看到返回的分页JSON数据包。

展开某个节点,我们可以发现朋友圈数据藏在data/paras节点下。

至此,我们完成数据的来源分析。
6.蜘蛛来也
完成了数据源分析,我们只需构造数据请求,并进行正确的数据解析,即可拿到我们想要的数据!
6.1.请求导航数据包
修改moment.py定义start_requests方法:
bookid = '12345678' #请填写【出书啦】返回链接中的数字部分
def start_requests(self):
"""
使用get方式请求导航数据包
"""
url = 'http://chushu.la/api/book/chushula-{0}?isAjax=1'.format(self.bookid) #获取目录的url
yield scrapy.Request(url, callback=self.parse)
重载parse方法,解析获取到的导航数据包:
def parse(self, response):
"""
处理获取到的导航数据包
"""
json_body = json.loads(response.body) #加载json数据包
catalogs = json_body['book']['catalogs'] #获取json中的目录数据包
6.2. 发送导航请求,抓取朋友圈数据
根据上面跟踪到发出的http导航请求,要想抓取到朋友圈数据,我们需要根据发出的请求参数构造参数。

从上图可知,主要包含五个参数:
- type:"year_month"为默认值
- year: 年份
- month: 月份
- index: 第几页
- value : 由年月拼接的字符串
继续修改我们的parse方法,遍历我们第一步抓取到的导航数据包构造请求参数:
def parse(self, response):
"""
处理获取到的导航数据包
"""
json_body = json.loads(response.body) #加载json数据包
catalogs = json_body['book']['catalogs'] #获取json中的目录数据包
url = 'http://chushu.la/api/book/wx/chushula-{0}/pages?isAjax=1'.format(self.bookid) #分页数据url
start_page = int(catalogs[0]['month']) #获取起始月份作为index传值
for catalog in catalogs:
year = catalog['year']
month = catalog['month']
formdata = {
"type": 'year_month',
"year": year,
"month": month,
"index": str(start_page),
"value": 'v_{0}{1}'.format(year, month)
}
start_page += 1
因为从我们跟踪到的http请求来看是基于json传参的post请求:
所以我们要这样发起请求:
yield scrapy.Request(
url,
method='POST',
body=json.dumps(formdata),
headers={'Content-Type': 'application/json'},
callback=self.parse_moment)
同样我们需要定义一个回调函数用来处理返回的朋友圈数据。定义parse_moment方法,根据返回的json数据包进行数据提取:
def parse_moment(self, response):
"""
朋友圈数据处理
"""
json_body = json.loads(response.body)
pages = json_body['pages']
pattern = re.compile(u"[\u4e00-\u9fa5]+") #匹配中文
item = WeixinMomentItem()
for page in pages:
if (page['type'] == "weixin_moment_page"):# 仅抓取朋友圈分页数据
paras = page['data']['paras']
if paras:
moment = ''
for content in paras[0]['rows']:
result = re.findall(pattern,
content['data']) #使用正则匹配所有中文朋友圈
moment += ''.join(result)
item['moment'] = moment
item['date'] = page['data']['dateText']#获取时间
yield item
以上用到了定义的WeixinMomentItem。修改items.py,做如下修改:
class WeixinMomentItem(scrapy.Item):
"""
朋友圈Item
"""
# define the fields for your item here like:
# name = scrapy.Field()
date = scrapy.Field() #日期
moment = scrapy.Field() #朋友圈文字
至此我们完成爬虫的书写。是不是迫不及待跑一下。
6.3. 蜘蛛爬起来
命令行执行scrapy crawl moment -o moment.json,稍等片刻,热乎的朋友圈数据就生成到moment.json文件中了。

7. 分词处理
jieba中文分词提供了便利的接口用于分词和词频统计。我们直接调用jieba.cut方法即可得到分词结果。在此之前我们需要加载我们爬取的朋友圈数据,即保存到moment.json文件中的数据,并拼接所有朋友圈文本传参至jieba.cut即可。
新添加一个analyse.py文件,定义analyse_words方法:
# -*- coding: utf-8 -*-
"""分析导出的朋友圈数据"""
import json
import os
import jieba
from wordcloud import WordCloud
def analyse_words():
"""
分析抓取到的朋友圈数据,使用jieba进行分词,使用wordcloud生成词云
"""
curr_path = os.path.dirname(__file__) # 当前文件文件夹所在目录
parent_path = os.path.dirname(curr_path) # 上层目录
file_path = os.path.join(parent_path, 'moment.json')
font_path = os.path.join(parent_path, "simhei.ttf")
if not os.path.isfile(file_path):
return
with open(file_path) as moment_file:
data = json.load(moment_file) # 使用json加载文件
moments = [item.get('moment', '') for item in data] # 获取朋友圈文字数组
contents = ' '.join(moments) # 拼接为长文本
cut_texts = ' '.join(jieba.cut(contents)) # 使用结巴分词进行中文分词
8. 生成关键词词云
词云需要基于上一步的分词结果生成词云。代码也很简单:
cloud = WordCloud(font_path=font_path)
wordcloud = cloud.generate(cut_texts) #生成词云
wordcloud.to_file('keys.png') #保存图片
image = wordcloud.to_image() # 转化为图片
image.show() # 展示图片
最后在文件末尾调用analyse_words(),命令行执行python analyse.py即可生成关键词!

你可能嫌弃以上生成的词云比较丑,没关系,你可以使用wordart做出各种酷炫的效果。
9. 最后
因为【出书啦】未完善反爬机制,所以爬虫写下来也没有什么难度,所以感兴趣的不妨赶紧动手试一试。本文出于学习分享,无恶意窃取数据之意,也请读者不要用于他途!
爬取朋友圈,Get年度关键词的更多相关文章
- 利用Python爬取朋友圈数据,爬到你开始怀疑人生
人生最难的事是自我认知,用Python爬取朋友圈数据,让我们重新审视自己,审视我们周围的圈子. 文:朱元禄(@数据分析-jacky) 哲学的两大问题:1.我是谁?2.我们从哪里来? 本文 jacky试 ...
- 微信朋友圈转疯了(golang写小爬虫抓取朋友圈文章)
很多人在朋友圈里转发一些文章,标题都是什么转疯啦之类,虽然大多都也是广告啦,我觉得还蛮无聊的,但是的确是有一些文章是非常值得收藏的,比如老婆经常就会收藏一些养生和美容的文章在微信里看. 今天就突发奇想 ...
- python实战项目 — 爬取中国票房网年度电影信息并保存在csv
import pandas as pd import requests from bs4 import BeautifulSoup import time def spider(url, header ...
- python爬虫24 | 搞事情了,用 Appium 爬取你的微信朋友圈。
昨天小帅b看到一些事情不顺眼 有人偷换概念 忍不住就写了一篇反讽 996 的 看不下去了,我支持996,年轻人就该996! 没想到有些人看不懂 这就算了 还来骂我 早些时候关注我的小伙伴应该知道我第一 ...
- 如何利用Python网络爬虫抓取微信朋友圈的动态(上)
今天小编给大家分享一下如何利用Python网络爬虫抓取微信朋友圈的动态信息,实际上如果单独的去爬取朋友圈的话,难度会非常大,因为微信没有提供向网易云音乐这样的API接口,所以很容易找不到门.不过不要慌 ...
- python通过人脸识别全面分析好友,一起看透你的“朋友圈”
微信:一个提供即时通讯服务的应用程序,更是一种生活方式,超过数十亿的使用者,越来越多的人选择使用它来沟通交流. 不知从何时起,我们的生活离不开微信,每天睁开眼的第一件事就是打开微信,关注着朋友圈里好友 ...
- 如何利用Python网络爬虫爬取微信朋友圈动态--附代码(下)
前天给大家分享了如何利用Python网络爬虫爬取微信朋友圈数据的上篇(理论篇),今天给大家分享一下代码实现(实战篇),接着上篇往下继续深入. 一.代码实现 1.修改Scrapy项目中的items.py ...
- 【python网络编程】新浪爬虫:关键词搜索爬取微博数据
上学期参加了一个大数据比赛,需要抓取大量数据,于是我从新浪微博下手,本来准备使用新浪的API的,无奈新浪并没有开放关键字搜索的API,所以只能用爬虫来获取了.幸运的是,新浪提供了一个高级搜索功能,为我 ...
- 练习: bs4 简单爬取 + matplotlib 折线图显示 (关键词,职位数量、起薪)
要看一种技术在本地的流行程度,最简单的就是找招聘网站按关键词搜索. 比如今天查到的职位数量是vue 1296个,react 1204个,angular 721个.国际上比较流行的是react,本地市场 ...
随机推荐
- oracle 表查询(二)
1.使用逻辑操作符号问题:查询工资高于500或者是岗位为manager的雇员,同时还要满足他们的姓名首字母为大写的J?select * from emp where (sal > 500 or ...
- 一个完整的Node.js RESTful API
前言 这篇文章算是对Building APIs with Node.js这本书的一个总结.用Node.js写接口对我来说是很有用的,比如在项目初始阶段,可以快速的模拟网络请求.正因为它用js写的,跟i ...
- java基础——java.util.ConcurrentModificationException
在编写代码的时候,有时候会遇到List里有符合条件的的对象,就移除改对象! 但是这种操作如:使用了 List 的remove,会导致一些很严重的问题! 如下这段代码使用ArrayList: @Test ...
- C++运算符优先级 案例1
问: ... short nReaderCount=10 ++pLock->nReaderCount==? ...++和->同为1级优先级,我想很多也有很多新手弄 ...
- JSP入门2
1. CRUD是Create(创建).Read(读取).Update(更新)和Delete(删除)的缩写,一般应用有这四项也就足够了. 我们这里的例子是对联系人信息进行CRUD操作. 2. javab ...
- web应用中的异常处理
楼主前几天写了一篇“Java子线程中的异常处理(通用)”文章,介绍了在多线程环境下3种通用的异常处理方法. 但是平时大家的工作一般是基于开发框架进行的(比如Spring MVC,或Spring Boo ...
- java核心卷轴之泛型程序设计
本文根据<Java核心卷轴>第十二章总结而来,更加详细的内容请查看<Java核心卷轴> 1. 泛型类型只能是引用类型,不可以使用基本数据类型. 2. 类型变量含义 E : 集合 ...
- 编写通用shell脚本启动java项目,适用于多数服务,只需修改服务名即可
文件名:service-user.sh 文件内容: ##shell脚本的头文件必须有#!/bin/sh ##再次配置java环境变量以防报其他错误## java env#jdk安装目录export J ...
- validators配置要点及No result defined for action报错解决方案
在做JavaEE SSH项目时,接触到validators验证. 需要了解validators配置,或者遇到No result defined for action 这个错误时,可查阅本文得到有效解决 ...
- Python自学笔记-关于切片(来自廖雪峰的官网Python3)
感觉廖雪峰的官网http://www.liaoxuefeng.com/里面的教程不错,所以学习一下,把需要复习的摘抄一下. 以下内容主要为了自己复习用,详细内容请登录廖雪峰的官网查看. 切片 L[0: ...