皇宫看守

太平王世子事件后,陆小凤成了皇上特聘的御前一品侍卫。
皇宫以午门为起点,直到后宫嫔妃们的寝宫,呈一棵树的形状;某些宫殿间可以互相望见。大内保卫森严,三步一岗,五步一哨,每个宫殿都要有人全天候看守,在不同的宫殿安排看守所需的费用不同。
可是陆小凤手上的经费不足,无论如何也没法在每个宫殿都安置留守侍卫。
编程任务:帮助陆小凤布置侍卫,在看守全部宫殿的前提下,使得花费的经费最少。

输入格式:

输入数据由文件名为Guard.in的文本文件提供。输入文件中数据表示一棵树,描述如下:
第1行 n,表示树中结点的数目。
第2行至第n+1行,每行描述每个宫殿结点信息,依次为:该宫殿结点标号i(0<i<=n),在该宫殿安置侍卫所需的经费k,该边的儿子数m,接下来m个数,分别是这个节点的m个儿子的标号r1,r2,...,rm。
对于一个n(0 < n <= 1500)个结点的树,结点标号在1到n之间,且标号不重复。

输出格式:

输出文件仅包含一个数,为所求的最少的经费。

样例输入:

6
1 30 3 2 3 4
2 16 2 5 6
3 5 0
4 4 0
5 11 0
6 5 0

样例输出:

25

树形动规题,对每个节点开f[2][2]表示状态下的,
f[1][1]表示该节点有人,能守卫;f[0][1]表示该节点无人,但能被子节点守卫;f[0][0]表示该节点无人,不能被子节点守卫;f[1][0]无意义。
然后动规:f[0][0]=∑子节点f[0][1];
f[1][1]=∑子节点三个状态中最小的一个;
f[0][1]=保证子节点中至少有一个有人的状态下子节点的f[1][1]与f[0][1]的累加(f[0][0]不能算进去,因为该节点及其子节点均无人)
 #include<cstdio>
 #include<iostream>
 using namespace std;
 struct node{
     ],f[][],w;///f[GuardPresence][Guarded]
 }T[];
 int n;
 ];
 inline void dfs(int x)
 {
     ;i<=T[x].size;i++)
     {
         dfs(T[x].son[i]);
         T[x].f[][]+=T[T[x].son[i]].f[][];
         T[x].f[][]+=min(T[T[x].son[i]].f[][],min(T[T[x].son[i]].f[][],T[T[x].son[i]].f[][]));
     }
     T[x].f[][]+=T[x].w;
     ,p=;
     bool flag=false;
     ;i<=T[x].size;i++) ][]<=T[T[x].son[i]].f[][]){flag=true;break;}
     if(!flag)
     {
         ;i<=T[x].size;i++) ][]-T[T[x].son[i]].f[][])
         {
             tmp=T[T[x].son[i]].f[][]-T[T[x].son[i]].f[][];
             p=i;
         }
         T[x].f[][]+=T[T[x].son[p]].f[][];
         ;i<=T[x].size;i++) ][]+=T[T[x].son[i]].f[][];
     }
    ;i<=T[x].size;i++)T[x].f[][]+=min(T[T[x].son[i]].f[][],T[T[x].son[i]].f[][]);
     return;
 }
 int main()
 {
     int num;
     T[].f[][]=T[].f[][]=;
     scanf("%d",&n);
     ;i<=n;i++)
     {
         scanf("%d",&num);
         scanf("%d%d",&T[num].w,&T[num].size);
         ;j<=T[num].size;j++)
         {
             scanf("%d",&T[num].son[j]);
             havef[T[num].son[j]]=;
         }
     }
     int root;
     ;i<=n;i++) ){root=i;break;}
     dfs(root);
     printf(][],T[root].f[][]));
     ;
 }

Vijos1144小胖守皇宫【树形DP】的更多相关文章

  1. [vijos1144]小胖守皇宫<树形dp>

    题目链接:https://vijos.org/p/1144 woc我竟然A了,这道经典的树形dp或者说是树形dp的入门题我终于过了,虽然之前做过一些树形dp的题,但是这题开始还是一脸懵逼,dp方程如何 ...

  2. 【树形dp】vijos1144小胖守皇宫

    细节很精妙 描述 huyichen世子事件后,xuzhenyi成了皇上特聘的御前一品侍卫. 皇宫以午门为起点,直到后宫嫔妃们的寝宫,呈一棵树的形状:某些宫殿间可以互相望见.大内保卫森严,三步一岗,五步 ...

  3. Vijos 1144 小胖守皇宫 【树形DP】

    小胖守皇宫 描述 huyichen世子事件后,xuzhenyi成了皇上特聘的御前一品侍卫. 皇宫以午门为起点,直到后宫嫔妃们的寝宫,呈一棵树的形状:某些宫殿间可以互相望见.大内保卫森严,三步一岗,五步 ...

  4. 树形dp 之 小胖守皇宫

    题目描述 huyichen世子事件后,xuzhenyi成了皇上特聘的御前一品侍卫. 皇宫以午门为起点,直到后宫嫔妃们的寝宫,呈一棵树的形状:有边相连的宫殿间可以互相望见.大内保卫森严,三步一岗,五步一 ...

  5. 小胖守皇宫(VIJOS P1144 )题解

    题目描述 huyichen世子事件后,xuzhenyi成了皇上特聘的御前一品侍卫. 皇宫以午门为起点,直到后宫嫔妃们的寝宫,呈一棵树的形状:某些宫殿间可以互相望见.大内保卫森严,三步一岗,五步一哨,每 ...

  6. vijos 小胖守皇宫

    点击打开题目 树形DP 显然会想到某个点放或不放守卫来定义状态,但在不放的情况下,需要分类讨论是父亲放还是一个儿子放,于是定义以下状态: f[root][0]表示自己不放,父亲也不放 f[root][ ...

  7. 【vijos1144】小胖守皇宫(树形DP)

    描述 huyichen世子事件后,xuzhenyi成了皇上特聘的御前一品侍卫. 皇宫以午门为起点,直到后宫嫔妃们的寝宫,呈一棵树的形状:某些宫殿间可以互相望见.大内保卫森严,三步一岗,五步一哨,每个宫 ...

  8. vijos1144(小胖守皇宫)

    也是ural1039 描述 huyichen世子事件后,xuzhenyi成了皇上特聘的御前一品侍卫. 皇宫以午门为起点,直到后宫嫔妃们的寝宫,呈一棵树的形状:某些宫殿间可以互相望见.大内保卫森严,三步 ...

  9. 树形DP 复习

    树形DP 树形DP:建立在树上的动态规划 一般有两种传递方式:根→叶或叶→根 前者出现在换根DP中,一般操作是求出某一个点的最优解,再通过这一个点推知其他点的最优解. 后者是树形DP的常见形式,一般树 ...

随机推荐

  1. Sublime Text 3 修改插件安装位置【sublime text、插件路径、Data】

    直接切入正题,在享受Sublime 插件给我们带来开发效率的同时,有些插件的文件也是很大的,但是插件默认安装的位置是AppData的目录[C:\Users\用户名\AppData\Roaming\Su ...

  2. sizeof和strlen的区别和联系总结

    link:http://blog.csdn.net/ghevinn/article/details/9974967    strlen所作的仅仅是一个计数器的工作,它从内存的某个位置(可以是字符串开头 ...

  3. Vue2.0源码阅读笔记--双向绑定实现原理

    上一篇 文章 了解了Vue.js的生命周期.这篇分析Observe Data过程,了解Vue.js的双向数据绑定实现原理. 一.实现双向绑定的做法 前端MVVM最令人激动的就是双向绑定机制了,实现双向 ...

  4. java程序员--小心你代码中的内存泄漏

    当你从c&c++转到一门具有垃圾回收功能的语言时,程序员的工作就会变得更加容易,因为你用完对象,他们会被自动回收,但是,java程序员真的不需要考虑内存泄露吗? 其实不然 1.举个例子-看你能 ...

  5. 解释 : translate 功能,过程

    本来预计是这样设计的 admin在增加内容时,如:添加新的地点或新的FAQ,这时需要有中文,马来文等,但是顾客通常是不会添加的,所以这部分就不给顾客添加或更改. 用户来到前台,先看看localstor ...

  6. javascript中加var和不加var的区别

    Javascript是遵循ECMAScript标准下的一个产物,自然ECMAScript的标准其要遵循. 先来看下var关键字的定义和用法 var 语句用于声明变量. JavaScript 变量的创建 ...

  7. Linux的常用基本命令。

    Linux的常用基本命令. 首先启动Linux.启动完毕后需要进行用户的登录,选择登陆的用户不同自然权限也不一样,其中"系统管理员"拥有最高权限. 在启动Linux后屏幕出现如下界 ...

  8. asp.net mvc源码分析-Route的GetRouteData

    我知道Route这里东西应该算路由,这里把它放到mvc里面有些不怎么合适,但是我想大家多数遇到路由都是在mvc的时候吧.首先我们还是来看看GetRouteData方法吧 [csharp] public ...

  9. String to Integer (atoi) leetcode

    Implement atoi to convert a string to an integer. Hint: Carefully consider all possible input cases. ...

  10. 3631: [JLOI2014]松鼠的新家

    3631: [JLOI2014]松鼠的新家 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 707  Solved: 342[Submit][Statu ...