正题

题目链接:https://www.luogu.com.cn/problem/P4173


题目大意

给出两个字符串\(S,T\),其中包含小写字母和一些\(?\),\(?\)可以匹配任何字符。

求有多少个\(p\)使得\(T_{0\sim |t|-1}=S_{p\sim p+|t|-1}\)


解题思路

如果不考虑\(?\),我们可以用做差法来匹配两个字符,构造匹配函数

\[f(x)=\sum_{i=0}^{m}(T_i-S_{x+i})^2
\]

这样若\(f(x)=0\)证明它们在位置\(x\)处匹配。

但是现在有\(?\),也就是要跳过有\(?\)的位置,定义\(?\)的值为\(0\),然后改一下匹配函数

\[f(x)=\sum_{i=0}^{m}(T_i-S_{x+i})^2T_iS_{x+i}
\]

展开二次项

\[f(x)=\sum_{i=0}^{m}T_i^3S_{x+i}-2T_{i}^2S_{x+i}^2+T_iS_{x+i}^3
\]

把\(T\)反过来就是\(\sum_{i=0}^{m}T_{m-i-1}^3S_{x+i}-2T_{m-i-1}^2S_{x+i}^2+T_{m-i-1}S_{x+i}^3\)

然后有三个式子卷积之后加起来就好了。

常数极大,开\(\text{-O2}\)才能过。时间复杂度\(O(n\log n)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#define int long long
using namespace std;
const int N=1e6+2e5;
const double Pi=acos(-1);
struct complex{
double x,y;
complex(double xx=0,double yy=0)
{x=xx;y=yy;return;}
};
complex operator+(complex a,complex b)
{return complex(a.x+b.x,a.y+b.y);}
complex operator-(complex a,complex b)
{return complex(a.x-b.x,a.y-b.y);}
complex operator*(complex a,complex b)
{return complex(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);}
struct poly{
complex a[N];
}F[3],G[3];
int n,m,r[N],k;
char s[N],t[N];
queue<int> q;
void FFT(complex *f,int op,int n){
for(int i=0;i<n;i++)
if(i<r[i])swap(f[i],f[r[i]]);
for(int p=2;p<=n;p<<=1){
int len=p>>1;
complex tmp(cos(Pi/len),sin(Pi/len)*op);
for(int k=0;k<n;k+=p){
complex buf(1,0);
for(int i=k;i<k+len;i++){
complex tt=buf*f[i+len];
f[i+len]=f[i]-tt;
f[i]=f[i]+tt;
buf=buf*tmp;
}
}
}
if(op==-1)
for(int i=0;i<n;i++)
f[i].x/=(double)n;
return;
}
void mul(poly &a,poly &b){
FFT(a.a,1,k);FFT(b.a,1,k);
for(int i=0;i<k;i++)
a.a[i]=a.a[i]*b.a[i];
FFT(a.a,-1,k);
return;
}
signed main()
{
scanf("%d%d",&m,&n);
scanf("%s",t);scanf("%s",s);
for(int i=0;i<n;i++){
char c=s[i];int z=s[i]-'a'+1;
if(c=='*')z=0;
F[0].a[i]=complex(z*z*z,0);
F[1].a[i]=complex(z*z,0);
F[2].a[i]=complex(z,0);
}
for(int i=0;i<m;i++){
char c=t[m-i-1];int z=c-'a'+1;
if(c=='*')z=0;
G[0].a[i]=complex(z,0);
G[1].a[i]=complex(z*z,0);
G[2].a[i]=complex(z*z*z,0);
}
k=1;for(k=1;k<=2*n;)k<<=1;
for(int i=0;i<k;i++)
r[i]=(r[i>>1]>>1)|((i&1)?(k>>1):0);
mul(F[0],G[0]);mul(F[1],G[1]);mul(F[2],G[2]);
for(int i=0;i<k;i++)
F[0].a[i].x=F[0].a[i].x-2.0*F[1].a[i].x+F[2].a[i].x;
k=0;
for(int i=0;i<=n-m;i++)
if(fabs(F[0].a[i+m-1].x)<0.5)
k++,q.push(i);
printf("%d\n",k);
while(!q.empty())
printf("%d ",q.front()+1),q.pop();
return 0;
}

P4173-残缺的字符串【FFT】的更多相关文章

  1. Luogu P4173 残缺的字符串-FFT在字符串匹配中的应用

    P4173 残缺的字符串 FFT在字符串匹配中的应用. 能解决大概这种问题: 给定长度为\(m\)的A串,长度为\(n\)的B串.问A串在B串中的匹配数 我们设一个函数(下标从\(0\)开始) \(C ...

  2. P4173 残缺的字符串(FFT字符串匹配)

    P4173 残缺的字符串(FFT字符串匹配) P4173 解题思路: 经典套路将模式串翻转,将*设为0,设以目标串的x位置匹配结束的匹配函数为\(P(x)=\sum^{m-1}_{i=0}[A(m-1 ...

  3. 洛谷 P4173 残缺的字符串 (FFT)

    题目链接:P4173 残缺的字符串 题意 给定长度为 \(m\) 的模式串和长度为 \(n\) 的目标串,两个串都带有通配符,求所有匹配的位置. 思路 FFT 带有通配符的字符串匹配问题. 设模式串为 ...

  4. P4173 残缺的字符串 fft

    题意:给你两个字符串,问你第一个在第二个中出现过多少次,并输出位置,匹配时是模糊匹配*可和任意一个字符匹配 题解:fft加速字符串匹配; 假设上面的串是s,s长度为m,下面的串是p,p长度为n,先考虑 ...

  5. luoguP4173 残缺的字符串 FFT

    luoguP4173 残缺的字符串 FFT 链接 luogu 思路 和昨天做的题几乎一样. 匹配等价于(其实我更喜欢fft从0开始) \(\sum\limits_{i=0}^{m-1}(S[i+j]- ...

  6. BZOJ 4259: 残缺的字符串 [FFT]

    4259: 残缺的字符串 题意:s,t,星号任意字符,匹配方案数 和上题一样 多乘上一个\(a_{j+i}\)就行了 #include <iostream> #include <cs ...

  7. 【BZOJ4259】残缺的字符串 FFT

    [BZOJ4259]残缺的字符串 Description 很久很久以前,在你刚刚学习字符串匹配的时候,有两个仅包含小写字母的字符串A和B,其中A串长度为m,B串长度为n.可当你现在再次碰到这两个串时, ...

  8. 洛谷P4173 残缺的字符串(FFT)

    传送门 话说为什么字符串会和卷积扯上关系呢……到底得脑洞大到什么程度才能想到这种东西啊……大佬太珂怕了…… 因为通配符的关系,自动机已经废了 那么换种方式考虑,如果两个字符串每一位对应的编码都相等,那 ...

  9. [Luogu P4173]残缺的字符串 ( 数论 FFT)

    题面 传送门:洛咕 Solution 这题我写得脑壳疼,我好菜啊 好吧,我们来说正题. 这题.....emmmmmmm 显然KMP类的字符串神仙算法在这里没法用了. 那咋搞啊(或者说这题和数学有半毛钱 ...

  10. P4173 残缺的字符串(FFT)

    [Luogu4173] 题解 \(1.\)定义匹配函数 \(2.\)定义完全匹配函数 \(3.\)快速计算每一位的完全匹配函数值 #include<cstdio> #include< ...

随机推荐

  1. flutter中将widget转为base64

    flutter中可以通过RepaintBoundary widget中的toImage方法将页面中的widget转为base64. 如何使用? 首先要在全局定义一个global key,分配给Repa ...

  2. C#串口通信SeriPort 电表DLT645 RS234/RS485

    难受,三个多月前有一个电表电量监控的项目.做完了就没再管了.今天有需求需要改一些地方,但是....我想不起来干了啥,怎么干的啦.真的完全忘了.....项目名称叫啥都忘了.找了半天 不知道有没有和我一样 ...

  3. WPF设计自定义控件

    在实际工作中,WPF提供的控件并不能完全满足不同的设计需求.这时,需要我们设计自定义控件. 这里LZ总结一些自己的思路,特性如下: Coupling UITemplate Behaviour Func ...

  4. SpringBoot使用@Scheduled创建定时任务

    定时任务一般会存在中大型企业级项目中,为了减少服务器.数据库的压力往往会采用时间段性的去完成某些业务逻辑.比较常见的就是金融服务系统推送回调,一般支付系统订单在没有收到成功的回调返回内容时会持续性的回 ...

  5. Java全栈方向学习路线

    前端方向 前端基础 HTML --> https://www.w3school.com.cn/html/index.asp CSS --> https://www.w3school.com ...

  6. rEFI引导Win10+Ubuntu14双系统

    公司买了一台Alienware 15 R2,安装双系统折腾死我了,现在记录一下安装过程. 硬盘: 256固态+1T机械 安装顺序: 先Windows,再Ubuntu 不同BIOS启动方式下安装系统 U ...

  7. IMO 2021 第 1 题拓展问题的两个极值的编程求解

    IMO 2021 第 1 题拓展问题的两个极值的编程求解 本篇是 IMO 2021 第一题题解及相关拓展问题分析 的续篇. 拓展问题三: (I). 求 n 的最小值,使得 n, n + 1, ..., ...

  8. MySQL-SQL基础-DCL

    mysql> grant select,insert on sakila.* to 'zl'@'localhost' identified by '123'; Query OK, 0 rows ...

  9. Nginx+Tomcat+Memcached实现session共享

    实验环境: server1:nginx tomcat memcached server2:tomcat memcached Session是指一个终端用户与交互系统进行通信的时间间隔,通常指从注册进入 ...

  10. rtl8188eu 驱动移植

    测试平台 宿主机平台:Ubuntu 16.04.6 目标机:iMX6ULL 目标机内核:Linux 4.1.15 rtl8188eu 驱动移植 在网上下载Linux版的驱动源码: wifi驱动的实现有 ...