Kang M., Park J. Contrastive Generative Adversarial Networks. arXiv preprint arXiv 2006.12681, 2020.

如何将对比损失和GAN结合在一起呢?

主要内容

还是老问题, 结合对比学习就是如何构造正负样本的问题.

首先看图c, 本文ContraGAN提取特征的方式为\(D_{\phi_1}(x)\), 这部分是判别器的encoder部分, 即除最后一个全连接层的部分. 之后再经过projection (h)(这个是从SimCLR中启发得来的东西)得到最后的用于计算对比损失的特征\(l(x)=h(G_{\phi_1}(x))\). 另一部分的特征是直接通过样本标签得来的, 通过一个class embedding (e), 获得对应的特征\(e(y)\).

于是第一阶段的"对比损失"就出炉了

\[\tag{7}
\ell(x_i,y_i;\tau) =-\log \frac{\exp(l(x_i)^Te(y_i)/\tau)}{\exp(l(x_i)^Te(y_i)/\tau)+ \sum_{k\not= i}^m \exp(l(x_i)^Tl(x_k)/\tau)},
\]

其中\(x_i, x_k\)来自于一个batch的数据\(\{x_1, \ldots, x_m\}\), \(\tau\)代表temperature. 此对比损失与SimCLR中的差别仅在正样本对上, SimCLR中构造正样本对是\(l(\mathcal{T}(x_i))\), \(l(\mathcal{T}'(x_i))\), 即通过augmentation来构造正样本对. 这里的话是通过标签来构造正样本对. 显然最小化(7)式需要使得\(x_i\)的特征靠近\(e(y_i)\), 以及不同样本特征远离彼此. 这就造成了一个问题, 实际上作者是希望同一类的样本的特征是靠近的, 但(7)是的分母部分是背离这一点的(虽然分子是符合这一点的), 为此, 作者又在分子上加了他们的cosine相似度:

\[\tag{8}
\ell_{2C}(x_i,y_i;\tau) =-\log \frac{\exp(l(x_i)^Te(y_i)/\tau)+ \sum_{k=1}^m 1_{y_k=y_i} \exp(l(x_i)^Tl(x_k)/\tau)}{\exp(l(x_i)^Te(y_i)/\tau)+ \sum_{k\not= i}^m \exp(l(x_i)^Tl(x_k)/\tau)}.
\]

说白了, 这不就是彻彻底底的希望最大化类间距离, 最小化类内距离, 连类内中心都选好了(\(e(y_i)\), 虽然这个中心是可学习的).

作者说是这个idea受到一个互信息理论下界的启发, 但是我感觉没啥特别的意义, 这里就不贴了.

注: 总感觉没有体现出contrastive的特点, 从算法中可以看到, 计算训练损失, 真实的样本和伪造的样本是独立的. 但是仔细想想, 我们的目的不是训练一个好的生成器, 使其构造的图片和真实图片相近, 所以怎么也应该是真实图片和构造图片之间的对比. 当然, 困难在于我们不知道生成器所生成的图片所对应的真实的图片是怎样的, 不过我始终觉得这种处理方法没有发挥出contrastive的作用.

代码

作者整理了许多GAN模型.

原文代码

Contrastive Generative Adversarial Networks的更多相关文章

  1. CIAGAN: Conditional Identity Anonymization Generative Adversarial Networks阅读笔记

    CIAGAN: Conditional Identity Anonymization Generative Adversarial Networks 2020 CVPR 2005.09544.pdf ...

  2. StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks 论文笔记

    StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks  本文将利 ...

  3. 论文笔记之:Semi-Supervised Learning with Generative Adversarial Networks

    Semi-Supervised Learning with Generative Adversarial Networks 引言:本文将产生式对抗网络(GAN)拓展到半监督学习,通过强制判别器来输出类 ...

  4. 《Self-Attention Generative Adversarial Networks》里的注意力计算

    前天看了 criss-cross 里的注意力模型  仔细理解了  在: https://www.cnblogs.com/yjphhw/p/10750797.html 今天又看了一个注意力模型 < ...

  5. Paper Reading: Perceptual Generative Adversarial Networks for Small Object Detection

    Perceptual Generative Adversarial Networks for Small Object Detection 2017-07-11  19:47:46   CVPR 20 ...

  6. (转)Introductory guide to Generative Adversarial Networks (GANs) and their promise!

    Introductory guide to Generative Adversarial Networks (GANs) and their promise! Introduction Neural ...

  7. SalGAN: Visual saliency prediction with generative adversarial networks

    SalGAN: Visual saliency prediction with generative adversarial networks 2017-03-17 摘要:本文引入了对抗网络的对抗训练 ...

  8. Generative Adversarial Networks,gan论文的畅想

    前天看完Generative Adversarial Networks的论文,不知道有什么用处,总想着机器生成的数据会有机器的局限性,所以百度看了一些别人 的看法和观点,可能我是机器学习小白吧,看完之 ...

  9. 论文笔记之:UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS

    UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS  ICLR 2 ...

随机推荐

  1. 理解ASP.NET Core - 模型绑定&验证(Model Binding and Validation)

    注:本文隶属于<理解ASP.NET Core>系列文章,请查看置顶博客或点击此处查看全文目录 模型绑定 什么是模型绑定?简单说就是将HTTP请求参数绑定到程序方法入参上,该变量可以是简单类 ...

  2. Redis - 1 - linux中使用docker-compose安装Redis - 更新完毕

    0.前言 有我联系方式的那些半吊子的人私信问我:安装Redis有没有更简单的方式,网上那些文章和视频,没找到满意的方法,所以我搞篇博客出来说明一下我的安装方式吧 1.准备工作 保证自己的linux中已 ...

  3. A Child's History of England.11

    CHAPTER 4 ENGLAND UNDER ATHELSTAN AND THE SIX BOY-KINGS Athelstan, the son of Edward the Elder, succ ...

  4. day16 Linux三剑客之awk

    day16 Linux三剑客之awk 1.什么是awk,主要作用是什么? 什么是awk,主要作用是什么? awk 主要用来处理文件,将文本按照指定的格式输出.其中包含变量,循环以及数组. 2.awk的 ...

  5. eclipse上点击open Perspective找不到java EE的解决办法

    原因:没有安装java ee等插件 Help--->Install New software---->work  with中选择All Available  Sites---->  ...

  6. [php反序列化] CVE-2020-15148(Yii2 反序列化漏洞) 漏洞复现

    漏洞影响范围 Yii2 < 2.0.38 环境搭建 Yii2.0.37 漏洞分析 首先定位到漏洞起始点 为什么是这儿?我们该怎么发现是某个类的某个函数?为什么不是其他函数? 一般是__destr ...

  7. mybatis缓存+aop出现的问题

    在对某些特殊数据进行转换时,getOne方法后执行fieleInfoHandle进行转换,如果直接使用fixedTableData进行操作,没有后续的二次调用这样是没问题的,但是在后面当执行完upda ...

  8. OC-私有方法,构造方法,类的本质及启动过程

    总结 标号 主题 内容 一 OC的私有方法 私有变量/私有方法 二 @property 概念/基本使用/寻找方法的过程/查找顺序 三 @synthesize @synthesize概念/基本使用/注意 ...

  9. 登录界面.jsp

    <!DOCTYPE html><html lang="zh-CN"> <head> <meta charset="utf-8&q ...

  10. 【CentOS】检查系统是否安装OpenSSH

    CentOS7 远程联机 哔哩哔哩 萌狼蓝天 博客:https://mllt.cc 微信公众号:萌狼蓝天 检查与安装配置OpenSSH [CentOS7]检查系统是否安装OpenSSH yum -q ...