多视觉任务的全能: HRNet

HRNet是微软亚洲研究院的王井东老师领导的团队完成的,打通图像分类、图像分割、目标检测、人脸对齐、姿态识别、风格迁移、Image Inpainting、超分、optical flow、Depth estimation、边缘检测等网络结构。

王老师在ValseWebinar《物体和关键点检测》中亲自讲解了HRNet,讲解地非常透彻。以下文章主要参考了王老师在演讲中的解读,配合论文+代码部分,来为各位读者介绍这个全能的Backbone-HRNet。

1. 引入

网络结构设计思路

在人体姿态识别这类的任务中,需要生成一个高分辨率的heatmap来进行关键点检测。这就与一般的网络结构比如VGGNet的要求不同,因为VGGNet最终得到的feature map分辨率很低,损失了空间结构。

传统的解决思路

获取高分辨率的方式大部分都是如上图所示,采用的是先降分辨率,然后再升分辨率的方法。U-Net、SegNet、DeconvNet、Hourglass本质上都是这种结构。

虽然看上去不同,但是本质是一致的

2. 核心

普通网络都是这种结构,不同分辨率之间是进行了串联

不断降分辨率

王井东老师则是将不同分辨率的feature map进行并联:

并联不同分辨率feature map

在并联的基础上,添加不同分辨率feature map之间的交互(fusion)。

具体fusion的方法如下图所示:

同分辨率的层直接复制。

·

需要升分辨率的使用bilinear upsample + 1x1卷积将channel数统一。

·

需要降分辨率的使用strided 3x3 卷积。

·

三个feature map融合的方式是相加。

至于为何要用strided 3x3卷积,这是因为卷积在降维的时候会出现信息损失,使用strided 3x3卷积是为了通过学习的方式,降低信息的损耗。所以这里没有用maxpool或者组合池化。

HR示意图

另外在读HRNet的时候会有一个问题,有四个分支的到底如何使用这几个分支呢?论文中也给出了几种方式作为最终的特征选择。

三种特征融合方法

(a)图展示的是HRNetV1的特征选择,只使用分辨率最高的特征图。

(b)图展示的是HRNetV2的特征选择,将所有分辨率的特征图(小的特征图进行upsample)进行concate,主要用于语义分割和面部关键点检测。

(c)图展示的是HRNetV2p的特征选择,在HRNetV2的基础上,使用了一个特征金字塔,主要用于目标检测网络。

再补充一个(d)图

HRNetV2分类网络后的特征选择

(d)图展示的也是HRNetV2,采用上图的融合方式,主要用于训练分类网络。

总结一下HRNet创新点:·

将高低分辨率之间的链接由串联改为并联。在整个网络结构中都保持了高分辨率的表征(最上边那个通路)。·

在高低分辨率中引入了交互来提高模型性能。

3. 效果

3.1 消融实验

1.  对交互方法进行消融实验,证明了当前跨分辨率的融合的有效性。

交互方法的消融实现

2.  证明高分辨率feature map的表征能力

1x代表不进行降维,2x代表分辨率变为原来一半,4x代表分辨率变为原来四分之一。W32、W48中的32、48代表卷积的宽度或者通道数。

3.2 姿态识别任务上的表现

以上的姿态识别采用的是top-down的方法。

COCO验证集的结果

可以看到上图用红色箭头串起来的是不是和SELayer很相似。为什么说SENet是HRNet的一个特例,但从这个结构来讲,可以这么看:

·       SENet没有像HRNet这样分辨率变为原来的一半,分辨率直接变为1x1,比较极端。变为1x1向量以后,SENet中使用了两个全连接网络来学习通道的特征分布;但是在HRNet中,使用了几个卷积(Residual block)来学习特征。

·       SENet在主干部分(高分辨率分支)没有安排卷积进行特征的学习;HRNet在主干部分(高分辨率分支)安排了几个卷积(Residual block)来学习特征。

·       特征融合部分SENet和HRNet区分比较大,SENet使用的对应通道相乘的方法,HRNet则使用的是相加。之所以说SENet是通道注意力机制是因为通过全局平均池化后没有了空间特征,只剩通道的特征;HRNet则可以看作同时保留了空间特征和通道特征,所以说HRNet不仅有通道注意力,同时也有空间注意力。

HRNet团队构建了分类、分割、检测、关键点检测等库,工作量非常大,而且做了很多扎实的实验证明了这种思路的有效性。所以是否可以认为HRNet属于SENet之后又一个更优的backbone呢?还需要自己实践中使用这种想法和思路来验证。

4. 参考

https://arxiv.org/pdf/1908.07919

https://www.bilibili.com/video/BV1WJ41197dh?t=508

https://github.com/HRNet

多视觉任务的全能: HRNet的更多相关文章

  1. 深度自适应增量学习(Incremental Learning Through Deep Adaptation)

    深度自适应增量学习(Incremental Learning Through Deep Adaptation) 2018-05-25 18:56:00 木呆呆瓶子 阅读数 10564  收藏 更多 分 ...

  2. 理解CSS视觉格式化

    前面的话   CSS视觉格式化这个词可能比较陌生,但说起盒模型可能就恍然大悟了.实际上,盒模型只是CSS视觉格式化的一部分.视觉格式化分为块级和行内两种处理方式.理解视觉格式化,可以确定得到的效果是应 ...

  3. CSS学习笔记——视觉格式化模型 visual formatting model

    CSS 视觉格式化模型(visual formatting model)是用来处理文档并将它显示在视觉媒体上的机制.他有一套既定的规则(也就是W3C规范),规定了浏览器该怎么处理每一个盒子.以下内容翻 ...

  4. 【原】为什么选择iPhone5的分辨率作为H5视觉稿尺寸

    [20160105更新:可以用iPhone6分辨率为视觉稿尺寸啦] 又是一年的520网络情人节,深圳这边却下了大雨,这雨只能是单身汉的泪,而对于我来说这一天具有特别的意义,一来怀念父亲,二来对我这种结 ...

  5. 怪物AI之发现玩家(视觉范围发现系列)

    在网上找到一些资料参考,然后写写自己的想法. 这里感谢MOMO等大神. 我们用玩家检测怪物的方法来测,这样比较试用与弱联网游戏,每次在同步玩家的时候来判断玩家与怪物的位置. 这里给出两个处理方式: 1 ...

  6. 【转】Caffe初试(五)视觉层及参数

    本文只讲解视觉层(Vision Layers)的参数,视觉层包括Convolution, Pooling, Local Response Normalization (LRN), im2col等层. ...

  7. 视觉机器学习笔记------CNN学习

    卷积神经网络是第一个被成功训练的多层神经网络结构,具有较强的容错.自学习及并行处理能力. 一.基本原理 1.CNN算法思想 卷积神经网络可以看作为前馈网络的特例,主要在网络结构上对前馈网络进行简化和改 ...

  8. 视觉机器学习------K-means算法

    K-means(K均值)是基于数据划分的无监督聚类算法. 一.基本原理       聚类算法可以理解为无监督的分类方法,即样本集预先不知所属类别或标签,需要根据样本之间的距离或相似程度自动进行分类.聚 ...

  9. MG--滚动的视觉差效果

    #几句代码完成tableView滚动的视觉差 - 效果图 (失帧严重)![](http://upload-images.jianshu.io/upload_images/1429890-f2c8577 ...

随机推荐

  1. Mysql 8.0安装

    1. 下载安装包至/usr/local目录下 下载地址:https://cdn.mysql.com/Downloads/MySQL-8.0/mysql-8.0.16-el7-x86_64.tar.gz ...

  2. POJ3040给奶牛发工资

    题意:       有n种硬币,每种硬币有mi个,然后让你给奶牛发工资,每周发至少c元(就是不找零钱的意思)然后问你能发几周?(硬币之间都是倍数关系) 思路:       这个题目做了两天,丢脸,看完 ...

  3. Hydra暴力破解工具的用法

    目录 Hydra 常见参数 破解SSH 破解FTP 破解HTTP 破解3389远程登录 Kali自带密码字典 dirb dirbuster fern-wifi metasploit wfuzz Hyd ...

  4. php 解析富文本编辑器中的hmtl内容,富文本样式正确输出

    说明:富文本编辑器中的内容在直接获获取后需要解析以后才能在页面中正确显示 我在后端这样处理: $content = htmlspecialchars_decode($info['intro']); h ...

  5. 浅析DDD——领域驱动设计的理解

    浅析DDD--领域驱动设计的理解 我觉得领域驱动设计概念的提出,是为了更清晰的区分边界.这里的边界包括业务边界和功能的边界,每个边界都包含具体的领域对象,当业务和功能的领域对象一一对应上之后,业务的变 ...

  6. 基于任务的异步编程(Task,async,await)

    这节讲一下比较高级的异步编程用法Task,以及两个异步关键字async和await. Task是在C#5.0推出的语法,它是基于任务的异步编程语法,是对Thread的升级,也提供了很多API,先看一下 ...

  7. 发布声明$\beta$

    一.新功能 \(\beta\)阶段集中开发了3大核心功能:支持模块的嵌套.模型市场.模型推理,这三项基本上都是从零开始.徒手开发的功能,没有轮子可以参照,因此也不具有可以对比的先前版本. 除此之外,开 ...

  8. [MySQL数据库之Navicat.pymysql模块、视图、触发器、存储过程、函数、流程控制]

    [MySQL数据库之Navicat.pymysql模块.视图.触发器.存储过程.函数.流程控制] Navicat Navicat是一套快速.可靠并价格相当便宜的数据库管理工具,专为简化数据库的管理及降 ...

  9. 关于Java的 long,float 类型

    发现了这么一个坑: 1.2f+3.4f=4.60000014305114751.2d+3.4d=4.6

  10. [刷题] 349 Intersection of Two Arrays

    查找问题 查找有无(只有键) 元素'a'是否存在 set(集合) 查找对应关系(键值对应) 元素'a'出现了几次 map(字典) set和map的底层实现是红黑树 常见操作 insert() find ...