官方文档

torch.matmul() 函数几乎可以用于所有矩阵/向量相乘的情况,其乘法规则视参与乘法的两个张量的维度而定。

关于 PyTorch 中的其他乘法函数可以看这篇博文,有助于下面各种乘法的理解。

torch.matmul() 将两个张量相乘划分成了五种情形:一维 × 一维、二维 × 二维、一维 × 二维、二维 × 一维、涉及到三维及三维以上维度的张量的乘法。

以下是五种情形的详细解释:

  1. 如果两个张量都是一维的,即 torch.Size([n]) ,此时返回两个向量的点积。作用与 torch.dot() 相同,同样要求两个一维张量的元素个数相同。

    例如:

    >>> vec1 = torch.tensor([1, 2, 3])
    >>> vec2 = torch.tensor([2, 3, 4])
    >>> torch.matmul(vec1, vec2)
    tensor(20)
    >>> torch.dot(vec1, vec2)
    tensor(20) # 两个一维张量的元素个数要相同!
    >>> vec1 = torch.tensor([1, 2, 3])
    >>> vec2 = torch.tensor([2, 3, 4, 5])
    >>> torch.matmul(vec1, vec2)
    Traceback (most recent call last):
    File "<stdin>", line 1, in <module>
    RuntimeError: inconsistent tensor size, expected tensor [3] and src [4] to have the same number of elements, but got 3 and 4 elements respectively
  2. 如果两个参数都是二维张量,那么将返回矩阵乘积。作用与 torch.mm() 相同,同样要求两个张量的形状需要满足矩阵乘法的条件,即(n×m)×(m×p)=(n×p)

    例如:

    >>> arg1 = torch.tensor([[1, 2], [3, 4]])
    >>> arg1
    tensor([[1, 2],
    [3, 4]])
    >>> arg2 = torch.tensor([[-1], [2]])
    >>> arg2
    tensor([[-1],
    [ 2]])
    >>> torch.matmul(arg1, arg2)
    tensor([[3],
    [5]])
    >>> torch.mm(arg1, arg2)
    tensor([[3],
    [5]]) >>> arg2 = torch.tensor([[-1], [2], [1]])
    >>> torch.matmul(arg1, arg2) # 要求满足矩阵乘法的条件
    Traceback (most recent call last):
    File "<stdin>", line 1, in <module>
    RuntimeError: mat1 and mat2 shapes cannot be multiplied (2x2 and 3x1)
  3. 如果第一个参数是一维张量,第二个参数是二维张量,那么在一维张量的前面增加一个维度,然后进行矩阵乘法,矩阵乘法结束后移除添加的维度。文档原文为:“a 1 is prepended to its dimension for the purpose of the matrix multiply. After the matrix multiply, the prepended dimension is removed.”

    例如:

    >>> arg1 = torch.tensor([-1, 2])
    >>> arg2 = torch.tensor([[1, 2], [3, 4]])
    >>> torch.matmul(arg1, arg2)
    tensor([5, 6]) >>> arg1 = torch.unsqueeze(arg1, 0) # 在一维张量前增加一个维度
    >>> arg1.shape
    torch.Size([1, 2])
    >>> ans = torch.mm(arg1, arg2) # 进行矩阵乘法
    >>> ans
    tensor([[5, 6]])
    >>> ans = torch.squeeze(ans, 0) # 移除增加的维度
    >>> ans
    tensor([5, 6])
  4. 如果第一个参数是二维张量(矩阵),第二个参数是一维张量(向量),那么将返回矩阵×向量的积。作用与 torch.mv() 相同。另外要求矩阵的形状和向量的形状满足矩阵乘法的要求。

    例如:

    >>> arg1 = torch.tensor([[1, 2], [3, 4]])
    >>> arg2 = torch.tensor([-1, 2])
    >>> torch.matmul(arg1, arg2)
    tensor([3, 5]) >>> torch.mv(arg1, arg2)
    tensor([3, 5])
  5. 如果两个参数均至少为一维,且其中一个参数的 ndim > 2,那么……(一番处理),然后进行批量矩阵乘法。

    这条规则将所有涉及到三维张量及三维以上的张量(下文称为高维张量)的乘法分为三类:一维张量 × 高维张量、高维张量 × 一维张量、二维及二维以上的张量 × 二维及二维以上的张量。

    1. 如果第一个参数是一维张量,那么在此张量之前增加一个维度。

      文档原文为:“ If the first argument is 1-dimensional, a 1 is prepended to its dimension for the purpose of the batched matrix multiply and removed after.”

    2. 如果第二个参数是一维张量,那么在此张量之后增加一个维度。

      文档原文为:“If the second argument is 1-dimensional, a 1 is appended to its dimension for the purpose of the batched matrix multiple and removed after. ”

    3. 由于上述两个规则,所有涉及到一维张量和高维张量的乘法都被转变为二维及二维以上的张量 × 二维及二维以上的张量。

      然后除掉最右边的两个维度,对剩下的维度进行广播。原文为:“The non-matrix dimensions are broadcasted.”

      然后就可以进行批量矩阵乘法。

      For example, if input is a (j × 1 × n × n) tensor and other is a (k × n × n) tensor, out will be a (j × k × n × n) tensor.

    举例如下:

    >>> arg1 = torch.tensor([1, 2, -1, 1])
    >>> arg2 = torch.randint(low=-2, high=3, size=[3, 4, 1])
    >>> torch.matmul(arg1, arg2)
    tensor([[ 5],
    [-1],
    [-1]]) >>> arg2
    tensor([[[ 2],
    [ 2],
    [-1],
    [-2]], [[-2],
    [ 2],
    [ 1],
    [-2]], [[ 0],
    [ 0],
    [-1],
    [-2]]])

    根据第一条规则,先对 arg1 增加维度:

    >>> arg3 = torch.unsqueeze(arg1, 0)
    >>> arg3
    tensor([[ 1, 2, -1, 1]])
    >>> arg3.shape
    torch.Size([1, 4])

    由于 arg2.shape=torch.Size([3, 4, 1]) ,根据广播的规则,arg3 要被广播为 torch.Size([3, 1, 4]) ,也就是下面的 arg4

    >>> arg4 = torch.tensor([ [[ 1,  2, -1,  1]], [[ 1,  2, -1,  1]], [[ 1,  2, -1,  1]] ])
    >>> arg4
    tensor([[[ 1, 2, -1, 1]], [[ 1, 2, -1, 1]], [[ 1, 2, -1, 1]]])
    >>> arg4.shape
    torch.Size([3, 1, 4])

    最后我们使用乘法函数 torch.bmm() 来进行批量矩阵乘法:

    >>> torch.bmm(arg4, arg2)
    tensor([[[ 5]], [[-1]], [[-1]]])

    由于在第一条规则中对一维张量增加了维度,因此矩阵计算结束后要移除这个维度。移除之后和前面使用 torch.matmul() 的结果相同!

PS:在看文档第五条规则时,起先也非常不明白,试了很多次高维和一维的张量乘法总是提示RuntimeError: mat1 and mat2 shapes cannot be multiplied,然后就尝试理解这条规则。因为这条规则很长,分成了三个小情形,并且这三个情形并不是一一独立的,而是前两个情形经过处理之后最后全都可以转变成第三个情形。另一个理解的突破口是 prependedappended 这两个单词,通过它们的前缀可以猜测出:一个是在张量前面增加维度,一个是在张量后面增加维度,然后广播再进行批量矩阵乘法就验证出来了!

PyTorch 中 torch.matmul() 函数的文档详解的更多相关文章

  1. 在MyEclipse中使用javadoc导出API文档详解

    本篇文档介绍如何在MyEclipse中导出javadoc(API)帮助文档,并且使用htmlhelp.exe和jd2chm.exe生成chm文档. 具体步骤如下: 打开MyEclipse,选中想要制作 ...

  2. MYSQL服务器my.cnf配置文档详解

    MYSQL服务器my.cnf配置文档详解 硬件:内存16G [client] port = 3306 socket = /data/3306/mysql.sock [mysql] no-auto-re ...

  3. 【红外DDE算法】数字细节增强算法的缘由与效果(我对FLIR文档详解)

    [红外DDE算法]数字细节增强算法的缘由与效果(我对FLIR文档详解) 1. 为什么红外系统中图像大多是14bit(甚至更高)?一个红外系统的性能经常以其探测的范围来区别,以及其对最小等效温差指标.首 ...

  4. Log4Net(二)之记录日志到文档详解

    原创文章,转载必需注明出处:http://www.ncloud.hk/%E6%8A%80%E6%9C%AF%E5%88%86%E4%BA%AB/log4net-%E4%BA%8C-%E4%B9%8B% ...

  5. Hibernate配置文档详解

    Hibernate配置文档有框架总部署文档hibernate.cfg.xml 和映射类的配置文档 ***.hbm.xml hibernate.cfg.xml(文件位置直接放在src源文件夹即可) (在 ...

  6. 【PDF】java使用Itext生成pdf文档--详解

    [API接口]  一.Itext简介 API地址:javadoc/index.html:如 D:/MyJAR/原JAR包/PDF/itext-5.5.3/itextpdf-5.5.3-javadoc/ ...

  7. elastic search文档详解

    在elastic search中文档(document)类似于关系型数据库里的记录(record),类型(type)类似于表(table),索引(index)类似于库(database). 文档一定有 ...

  8. 前端 HTML文档 详解

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  9. ABBYY FineReader 15扫描和保存文档详解

    通过使用ABBYY FineReader 15 OCR文字识别软件的扫描和保存文档功能,用户可使用扫描仪或数码照相机获得图像文档,然后再转换为各种数字格式文档. 在"新任务窗口"中 ...

随机推荐

  1. vue体验

    1.创建工作区 2.点击添加文件 3.新建一个html文件,并输入!+tab  自动生成html结构 4.输入div#app,生成头部 <!DOCTYPE html> <html l ...

  2. 精通 TensorFlow 1.x·翻译完成

    原文:Mastering TensorFlow 1.x 协议:CC BY-NC-SA 4.0 不要担心自己的形象,只关心如何实现目标.--<原则>,生活原则 2.3.c 在线阅读 Apac ...

  3. HowToDoInJava Java 教程·翻译完成

    原文:HowToDoInJava 协议:CC BY-NC-SA 4.0 欢迎任何人参与和完善:一个人可以走的很快,但是一群人却可以走的更远. ApacheCN 学习资源 目录 核心 Java 教程 什 ...

  4. Java定时器Timer使用方法详解

    感谢大佬:https://www.jb51.net/article/129808.htm 一.概念 定时计划任务功能在Java中主要使用的就是Timer对象,它在内部使用多线程的方式进行处理,所以它和 ...

  5. 自定义 RestTemplate 异常处理 (转)

    转自:https://ethendev.github.io/2018/11/06/RestTemplate-error-handler/ 一些 API 的报错信息通过 Response 的 body返 ...

  6. LaunchScreen原理

    会自动加载LaunchScreen是因为在Target当中,指定了Launch Screen file 它的底层实现其实把LaunchScreen上的东西,生成了一张图片,然后把这张图片设为程序的启动 ...

  7. TCP连接的状态转换图深度剖析

    转载请注明来源:https://www.cnblogs.com/hookjc/ 在TCP/IP协议中,TCP协议提供可靠的连接服务,采用三次握手建立一个连接,如图1所示. (1)第一次握手:建立连接时 ...

  8. 使用Reachability监测网络变化-陈鹏

    在appdelegate里面添加观察者,并启动监测 // 使用通知中心监听kReachabilityChangedNotification通知 [[NSNotificationCenter defau ...

  9. LeetCode随缘刷题之转化成小写字母

    这道题应该是最简单的一道题了把,简直在侮辱我. package leetcode.day_12_12; /** * 709. 转换成小写字母 * 给你一个字符串 s ,将该字符串中的大写字母转换成相同 ...

  10. linux_20

    总结tomcat优化方法 java程序出现oom如何解决?什么场景下会出现oom? 简述redis特点及其应用场景 对比redis的RDB.AOF模式的优缺点 实现redis哨兵,模拟master故障 ...