题目传送门

题目大意

给出 \(a_{1,2,...,n}\),对于 \(\forall k\in [1,n]\) ,求出:

\[\sum_{i=1}^{n}a_i^k
\]

\(n\le 2\times 10^5\),答案对 \(998244353\) 取模 。

思路

我们考虑对答案构造生成函数:

\[F(x)=\sum_{k=0}^{\infty} \sum_{i=1}^{n}a_i^kx^k
\]
\[=\sum_{i=1}^{n}\frac{1}{1-a_ix}
\]
\[=\sum_{i=1}^{n}(1+\frac{a_ix}{1-a_ix})
\]
\[=n-x(\sum_{i=1}^{n}\frac{-a_i}{1-a_ix})
\]

然后我们发现存在:

\[(\ln(1-a_ix))^{'}=\frac{-a_i}{1-a_ix}
\]

于是:

\[F(x)=n-x(\sum_{i=1}^{n}\ln(1-a_ix))^{'}
\]
\[=n-x(\ln \prod_{i=1}^{n}(1-a_ix))^{'}
\]

然后这个东西就可以直接分治解决了,时间复杂度 \(\Theta(n\log^2 n)\) 。

\(\texttt{Code}\)

#pragma GCC optimize("Ofast")
#pragma GCC optimize("inline", "no-stack-protector", "unroll-loops")
#pragma GCC diagnostic error "-fwhole-program"
#pragma GCC diagnostic error "-fcse-skip-blocks"
#pragma GCC diagnostic error "-funsafe-loop-optimizations" #include <bits/stdc++.h>
using namespace std; #define SZ(x) ((int)x.size())
#define Int register int
#define mod 998244353
#define MAXN 1000005 int mul (int a,int b){return 1ll * a * b % mod;}
int dec (int a,int b){return a >= b ? a - b : a + mod - b;}
int add (int a,int b){return a + b >= mod ? a + b - mod : a + b;}
int qkpow (int a,int k){
int res = 1;for (;k;k >>= 1,a = 1ll * a * a % mod) if (k & 1) res = 1ll * res * a % mod;
return res;
}
int inv (int x){return qkpow (x,mod - 2);} typedef vector <int> poly; int w[MAXN],rev[MAXN]; void init_ntt (){
int lim = 1 << 19;
for (Int i = 0;i < lim;++ i) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << 18);
int Wn = qkpow (3,(mod - 1) / lim);w[lim >> 1] = 1;
for (Int i = lim / 2 + 1;i < lim;++ i) w[i] = mul (w[i - 1],Wn);
for (Int i = lim / 2 - 1;i;-- i) w[i] = w[i << 1];
} void ntt (poly &a,int lim,int type){
#define G 3
#define Gi 332748118
static unsigned long long d[MAXN];
for (Int i = 0,z = 19 - __builtin_ctz(lim);i < lim;++ i) d[rev[i] >> z] = a[i];
for (Int i = 1;i < lim;i <<= 1)
for (Int j = 0;j < lim;j += i << 1)
for (Int k = 0;k < i;++ k){
int x = mul (w[i + k],d[i + j + k]);
d[i + j + k] = dec (d[j + k],x),d[j + k] = add (d[j + k],x);
}
for (Int i = 0;i < lim;++ i) a[i] = d[i];
if (type == -1){
reverse (a.begin() + 1,a.begin() + lim);
for (Int i = 0,Inv = inv (lim);i < lim;++ i) a[i] = mul (a[i],Inv);
}
#undef G
#undef Gi
} poly operator * (poly a,poly b){
int d = SZ (a) + SZ (b) - 1,lim = 1;while (lim < d) lim <<= 1;
a.resize (lim),b.resize (lim);
ntt (a,lim,1),ntt (b,lim,1);
for (Int i = 0;i < lim;++ i) a[i] = mul (a[i],b[i]);
ntt (a,lim,-1),a.resize (d);
return a;
} poly inv (poly a,int n){
poly b(1,inv (a[0])),c;
for (Int l = 4;(l >> 2) < n;l <<= 1){
c.resize (l >> 1);
for (Int i = 0;i < (l >> 1);++ i) c[i] = i < n ? a[i] : 0;
c.resize (l),b.resize (l);
ntt (c,l,1),ntt (b,l,1);
for (Int i = 0;i < l;++ i) b[i] = mul (b[i],dec (2,mul (b[i],c[i])));
ntt (b,l,-1),b.resize (l >> 1);
}
b.resize (n);
return b;
} poly inv (poly a){return inv (a,SZ (a));} poly der (poly a){
for (Int i = 0;i < SZ (a) - 1;++ i) a[i] = mul (a[i + 1],i + 1);
a.pop_back ();return a;
} poly ine (poly a){
a.push_back (0);
for (Int i = SZ (a) - 1;i;-- i) a[i] = mul (a[i - 1],inv (i));
a[0] = 0;return a;
} poly ln (poly a,int n){
a = ine (der (a) * inv (a));
a.resize (n);
return a;
} poly ln (poly a){return ln (a,SZ (a));} template <typename T> inline void read (T &t){t = 0;char c = getchar();int f = 1;while (c < '0' || c > '9'){if (c == '-') f = -f;c = getchar();}while (c >= '0' && c <= '9'){t = (t << 3) + (t << 1) + c - '0';c = getchar();} t *= f;}
template <typename T,typename ... Args> inline void read (T &t,Args&... args){read (t);read (args...);}
template <typename T> inline void write (T x){if (x < 0){x = -x;putchar ('-');}if (x > 9) write (x / 10);putchar (x % 10 + '0');} int n,a[MAXN];poly F; poly divide (int l,int r){
if (l == r){
poly tmp;tmp.resize(2);
tmp[0] = 1,tmp[1] = mod - a[l];
return tmp;
}
int mid = (l + r) >> 1;
return divide (l,mid) * divide (mid + 1,r);
} signed main(){
init_ntt ();
int T;read (T);
while (T --> 0){
read (n);
for (Int i = 1;i <= n;++ i) read (a[i]);
F = der (ln (divide (1,n))),F.resize (n + 1);
for (Int i = n;i;-- i) F[i] = mod - F[i - 1];F[0] = n;
int ans = 0;for (Int i = 1;i <= n;++ i) ans ^= (F[i] % mod + mod) % mod;
write (ans),putchar ('\n');
}
return 0;
}

题解 「THUPC 2017」小 L 的计算题 / Sum的更多相关文章

  1. LOJ#2409. 「THUPC 2017」小 L 的计算题 / Sum(生成函数)

    题意 给定一个长为 \(n\) 的序列 \(\{a_i\}\) 对于 \(k \in [1, n]\) 求 \[ f_k = \sum_{i = 1}^{n} a_i^k \pmod {9982443 ...

  2. LOJ 2409「THUPC 2017」小 L 的计算题 / Sum

    思路 和玩游戏一题类似 定义\(A_k(x)=\sum_{i=0}^\infty a_k^ix^i=\frac{1}{1-a_kx}\) 用\(\ln 'x\)代替\(\frac{1}{x}\), 所 ...

  3. 【LOJ2402】「THUPC 2017」天天爱射击 / Shooting(整体二分)

    点此看题面 大致题意: 有\(n\)个区间,每个区间有一个权值,当权值变成\(0\)时消失.每个时刻将覆盖某一位置的所有区间权值减\(1\),求每个时刻有多少个区间在这一刻消失. 前言 整体二分裸题啊 ...

  4. soj#2402 「THUPC 2017」天天爱射击 / Shooting

    分析 按照被穿过多少次整体二分即可 代码 #include<bits/stdc++.h> using namespace std; #define lb(x) x&(-x) ],r ...

  5. 「THUPC 2017」机场 / Airport

    https://loj.ac/problem/2403 题解 神仙题. 练习赛的时候想了个假建图. 正解太神仙了. 先把不合法情况判掉. 先对时间离散化,每个时间点开一个点. 然后把他们一次串起来,中 ...

  6. THUPC2017 小 L 的计算题

    求 $k=1,2,\cdots,n \space \space \sum\limits_{i=1}^n a_i^k$ $n \leq 2 \times 10^5$ sol: 时隔多年终于卡过去了 之前 ...

  7. [LOJ#2323]「清华集训 2017」小Y和地铁

    [LOJ#2323]「清华集训 2017」小Y和地铁 试题描述 小Y是一个爱好旅行的OIer.一天,她来到了一个新的城市.由于不熟悉那里的交通系统,她选择了坐地铁. 她发现每条地铁线路可以看成平面上的 ...

  8. [LOJ#2324]「清华集训 2017」小Y和二叉树

    [LOJ#2324]「清华集训 2017」小Y和二叉树 试题描述 小Y是一个心灵手巧的OIer,她有许多二叉树模型. 小Y的二叉树模型中,每个结点都具有一个编号,小Y把她最喜欢的一个二叉树模型挂在了墙 ...

  9. Loj #2324. 「清华集训 2017」小 Y 和二叉树

    Loj #2324. 「清华集训 2017」小 Y 和二叉树 小Y是一个心灵手巧的OIer,她有许多二叉树模型. 小Y的二叉树模型中,每个结点都具有一个编号,小Y把她最喜欢的一个二叉树模型挂在了墙上, ...

随机推荐

  1. JOB状态与并发

    由于job每次被执行时都会创建一个新的实例, jobDetail实例时,要进行数据存储或者,特殊字段操作,需要每次schedul执行job时保留之前的数据, 那么就需要job在有状态下保持之前的数据信 ...

  2. VPS系统后台性能优化实战

    作者: 刘用, 现任新东方APP团队高级软件工程师 2019年开始,新东方APP团队启动了长达半年以上的稳定性建设工作,为什么稳定性如此重要?因为随着每年30%以上的高速增长,现有的后端服务完全扛不住 ...

  3. 大天使之剑H5游戏超详细图文架设教程

    引言 想体验传奇游戏霸服的快乐吗?想体验满级VIP的尊贵吗?想体验一刀99999的爽快吗?各种极品装备装备.翅膀.宠物通通给你,就在大天使之剑! 本文讲解大天使之剑H5游戏的架设教程,想研究H5游戏如 ...

  4. Layui引起的对前端的一次记录

    前言 首先会做这次记录,也是因为自己也是第一次去接触这个框架,以前总是听说,并没有去用过.这次出于实习的原因,去学习了一下Layui这个"面向后端开发者的框架".其次,此篇记录仅供 ...

  5. Python - 面向对象编程 - 小实战(3)

    需求 房子(House)有户型.总面积.家具名称列表:新房子没有任何的家具 家具(HouseItem)有名字.占地面积 席梦思(bed) 占地 4 平米 衣柜(bed) 占地 2 平米 餐桌(bed) ...

  6. vivo营销自动化技术解密|开篇

    一.营销自动化概览 1.1. 什么是营销自动化 营销自动化是指专门为营销部门或组织设计的软件平台和技术,可以更有效地在线进行多渠道营销并使重复性任务自动化.营销部门和销售人员通过制定任务和流程的操作标 ...

  7. 使用Redis实现分布式会话

    1. 概述 传统的单体应用中,用户是否登录,通常是通过从Tomcat容器的session中获取登录用户信息判断的. 但在分布式的应用中,通常负载均衡了多台Tomcat,每台Tomcat都有自己独立的s ...

  8. ThinkCMF5.1主要特性

    更改框架协议为MIT,让你更自由地飞 基于ThinkPHP 5.1重构,但核心代码兼容5.0版本,保证老用户最小升级成本 增加对swoole支持,同时支持swoole协程和全同步模式(请单独安装扩展) ...

  9. MapReduce 示例:减少 Hadoop MapReduce 中的侧连接

    摘要:在排序和reducer 阶段,reduce 侧连接过程会产生巨大的网络I/O 流量,在这个阶段,相同键的值被聚集在一起. 本文分享自华为云社区<MapReduce 示例:减少 Hadoop ...

  10. Dockerfile自动制作Docker镜像(二)—— 其它常用命令

    Dockerfile自动制作Docker镜像(二)-- 其它常用命令 前言 a. 本文主要为 Docker的视频教程 笔记. b. 环境为 CentOS 7.0 云服务器 c. 上一篇:Dockerf ...