题解 [HNOI2012]集合选数
题目大意
直接看题面吧。
思路
感觉挺水的一道题啊?怎么评到紫色的啊?考试的时候LJS出了这个题的加强版我就只想出这个思路,然后就爆了。。。
不难发现,我们可以构造矩阵:
x 2x 4x 6x ...
3x 6x 12x 24x 48x ...
9x 18x 36x ...
然后实际上就相当于在这个矩阵中选出一些数使得两两不相邻。因为行数列数都是 \(\log\) 级别的,所以直接状压就好了。
\(\texttt{Code}\)
#include <bits/stdc++.h>
using namespace std;
#define Int register int
#define mod 1000000001
#define MAXN 1000005
template <typename T> void read (T &x){char c = getchar ();x = 0;int f = 1;while (c < '0' || c > '9') f = (c == '-' ? -1 : 1),c = getchar ();while (c >= '0' && c <= '9') x = x * 10 + c - '0',c = getchar ();x *= f;}
template <typename T,typename ... Args> void read (T &x,Args& ... args){read (x),read (args...);}
template <typename T> void write (T x){if (x < 0) x = -x,putchar ('-');if (x > 9) write (x / 10);putchar (x % 10 + '0');}
template <typename T> void Mx (T &a,T b){a = max (a,b);}
template <typename T> void Mi (T &a,T b){a = min (a,b);}
bool mark[MAXN];
int n,a[25][25],lim[25];
void init (int x){
a[1][1] = x;
for (Int i = 1;i <= 15;++ i){
if (i > 1) a[i][1] = a[i - 1][1] * 3;
if (a[i][1] > n) break;
for (Int j = 2;j <= 20;++ j){
a[i][j] = a[i][j - 1] * 2;
if (a[i][j] > n){
lim[i] = j - 1;
break;
}
}
for (Int j = 1;j <= lim[i];++ j) mark[a[i][j]] = 1;
}
}
bool chk[1 << 21];
int dp[2][1 << 22];
int WorkDP (){
int endl = 0;
for (Int i = 0;i < (1 << lim[1]);++ i) dp[1][i] = chk[i];
for (Int i = 2;i <= 15;++ i){
if (a[i][1] > n){
endl = i - 1;
break;
}
for (Int S = 0;S < (1 << lim[i]);++ S) if (chk[S]){
dp[i & 1][S] = 0;
for (Int S1 = 0;S1 < (1 << lim[i - 1]);++ S1)
if ((S & S1) == 0) dp[i & 1][S] += dp[i - 1 & 1][S1],dp[i & 1][S] %= mod;
}
else dp[i & 1][S] = 0;
}
int ans = 0;
for (Int S = 0;S < (1 << lim[endl]);++ S) ans += dp[endl & 1][S],ans %= mod;
return ans;
}
signed main(){
read (n);int res = 1;
for (Int i = 0;i < (1 << 20);++ i) chk[i] = ((i & (i >> 1)) == 0);
for (Int i = 1;i <= n;++ i) if (!mark[i]) init (i),res = 1ll * res * WorkDP () % mod;
write (res),putchar ('\n');
return 0;
}
题解 [HNOI2012]集合选数的更多相关文章
- bzoj 2734: [HNOI2012]集合选数 状压DP
2734: [HNOI2012]集合选数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 560 Solved: 321[Submit][Status ...
- BZOJ_2734_[HNOI2012]集合选数_构造+状压DP
BZOJ_2734_[HNOI2012]集合选数_构造+状压DP 题意:<集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x ...
- 2734: [HNOI2012]集合选数
2734: [HNOI2012]集合选数 链接 分析: 转化一下题意. 1 3 9 27... 2 6 18 54... 4 12 36 108... 8 24 72 216... ... 写成这样的 ...
- [HNOI2012]集合选数 --- 状压DP
[HNOI2012]集合选数 题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出\({1,2,3,4,5}\)的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x ...
- 2734: [HNOI2012]集合选数 - BZOJ
Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中 ...
- bzoj 2734: [HNOI2012]集合选数
题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中. 同学们不喜 ...
- 【刷题】BZOJ 2734 [HNOI2012]集合选数
Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中 ...
- BZOJ3724 [HNOI2012]集合选数 【状压dp】
题目链接 BZOJ3724 题解 构造矩阵的思路真的没想到 选\(x\)就不能选\(2x\)和\(3x\),会发现实际可以转化为矩阵相邻两项 \[\begin{matrix}1 & 3 &am ...
- BZOJ 2734 洛谷 3226 [HNOI2012]集合选数【状压DP】【思维题】
[题解] 思维题,看了别人的博客才会写. 写出这样的矩阵: 1,3,9,... 2,6,18,... 4,12.36,... 8,24,72,... 我们要做的就是从矩阵中选出一些数字,但是不能选相邻 ...
随机推荐
- rabbitMq队列长度限制
x-max-length:队列最大容纳消息条数 大于设置条数的时候会把,消息队列头部(先进入消息)的消息移除 x-max-length-bytes:队列最大容量消息内存容量服务端限流内存控制流量:40 ...
- 从kratos分析BBR限流源码实现
什么是自适应限流 自适应限流从整体维度对应用入口流量进行控制,结合应用的 Load.CPU 使用率.总体平均 RT.入口 QPS 和并发线程数等几个维度的监控指标,通过自适应的流控策略,让系统的入口流 ...
- Python之requests模块-大文件分片上传
最近在做接口测试时,拿到一个分片上传文件的接口,http接口请求头中的Content-Type为multipart/form-data.需要在客户端将大文件分片成数据块后,依次传给服务端,由服务端还原 ...
- 并发编程之:JUC并发控制工具
大家好,我是小黑,一个在互联网苟且偷生的农民工. 在上一期我们讲了Thread.join()方法和CountDownLatch,这两者都可以做到等待一个线程执行完毕之后当前线程继续执行,并且Count ...
- Linux下scp命令
1.scp 是 secure copy 的缩写, scp 是 linux 系统下基于 ssh 登陆进行安全的远程文件拷贝命令. 2.scp 是加密的,rcp 是不加密的,scp 是 rcp 的加强版. ...
- 基于Vue+Vuex+Vue-Router+axios+mint-ui的移动端电商项目
第一步:安装Node 1.打开NodeJS的官网,下载和自己系统相配的NodeJS的安装程序,包括32位还是64位一定要选择好,否则会出现安装问题. 下载地址:https://nodejs.org/e ...
- GDAL的基本操作
上一节简单介绍了GDAL,这一节将介绍一些GDAL的基本操作,如影像读写.波段提取.波段合成等.代码均用python编写. 1.遥感影像的读写 众所周知,遥感影像是以栅格形式存储的,GDAL中使用da ...
- 20210824 Prime,Sequence,Omeed
考场 T1 貌似是 luogu 上原题 T2 计数,想起了这题和这题,但没有 \(n^2\) 一档的分...准备打个表 T3 期望 DP,但暴力是 \(O(qn)\) 的,发现 \(combo\) 的 ...
- 判断input radio选中那个
var _sex=$("input[name='sex']:checked").val(); if(_sex==null){ layer.msg("请选择性别" ...
- %v的使用
不同的类型,他们的默认的%v 一个变动的格式化字符串,相当于一个变量,遇到不同类型,就变形成不同的格式. 类型 %v bool %t int/int8/... %d uint/uint8/.. ...