机器学习之支持向量机(python)
参考链接:https://blog.csdn.net/weixin_33514582/article/details/113321749、https://blog.csdn.net/weixin_44196785/article/details/109263326。
一、简介
支持向量机 (Support Vector Machine) 是由Vapnik等人于1995年提出来的,之后随着统计理论的发展,支持向量机 SVM 也逐渐受到了各领域研究者的关注,在很短的时间就得到了很广泛的应用。支持向量机是被公认的比较优秀的分类模型。同时,在支持向量机的发展过程中,其理论方面的研究得到了同步的发展,为支持向量机的研究提供了强有力的理论支撑。
1 SVM、SVC、SVR三者的区别
- SVM=Support Vector Machine 是支持向量机
- SVC=Support Vector Classification就是支持向量机用于分类,
- SVR=Support Vector Regression.就是支持向量机用于回归分析
2 算法(python-sklearn)
SVM模型的几种
- svm.LinearSVC Linear Support Vector Classification.
- svm.LinearSVR Linear Support Vector Regression.
- svm.NuSVC Nu-Support Vector Classification.
- svm.NuSVR Nu Support Vector Regression.
- svm.OneClassSVM Unsupervised Outlier Detection.
- svm.SVC C-Support Vector Classification.
- svm.SVR Epsilon-Support Vector Regression.
二、svr预测
1 SVR原理简述
线性回归的基本模型为:
SVR 示意图
从图例中分析,支持向量机回归与线性回归相比,支持向量回归表示只要在虚线内部的值都可认为是预测正确,只要计算虚线外部的值的损失即可。考虑到SVM中线性不可分的情形,在引入松弛变量
最终得出支持向量机回归的最优化问题:
引入拉格朗日乘数,经过一系列求解与对偶,求的线性拟合函数为:
引入核函数,则得:
2 python函数介绍
sklearn.svm.SVR(
kernel ='rbf',
degree = 3,
gamma ='auto_deprecated',
coef0 = 0.0,
tol = 0.001,
C = 1.0,
epsilon = 0.1,
shrinking = True,
cache_size = 200,
verbose = False,
max_iter = -1
)
'''
kernel:指定要在算法中使用的内核类型。它必须是'linear','poly','rbf', 'sigmoid',
'precomputed'或者callable之一。 degree: int,可选(默认= 3)多项式核函数的次数('poly')。被所有其他内核忽略。 gamma : float,(默认='auto'),'rbf','poly'和'sigmoid'的核系数。当前默认值为'auto',
它使用1 / n_features。 coef0 : float,(默认值= 0.0)核函数中的独立项。它只在'poly'和'sigmoid'中很重要。 tol : float,(默认值= 1e-3)容忍停止标准。 C : float,可选(默认= 1.0)错误术语的惩罚参数C. epsilon : float,optional(默认值= 0.1)epsilon在epsilon-SVR模型中。
它指定了epsilon-tube,其中训练损失函数中没有惩罚与在实际值的距离epsilon内预测的点。 shrinking : 布尔值,可选(默认= True)是否使用收缩启发式。 cache_size : float,可选,指定内核缓存的大小(以MB为单位)。 verbose : bool,默认值:False 启用详细输出。请注意,
此设置利用libsvm中的每进程运行时设置,如果启用,则可能无法在多线程上下文中正常运行。 max_iter : int,optional(默认值= -1) 求解器内迭代的硬限制,或无限制的-1
'''
3 示例代码
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.svm import SVR
from sklearn.metrics import r2_score np.random.seed(0) x = np.random.randn(80, 2)
y = x[:, 0] + 2*x[:, 1] + np.random.randn(80) clf = SVR(kernel='linear', C=1.25)
x_tran,x_test,y_train,y_test = train_test_split(x, y, test_size=0.25)
clf.fit(x_tran, y_train)
y_hat = clf.predict(x_test) print("得分:", r2_score(y_test, y_hat)) r = len(x_test) + 1
print(y_test)
plt.plot(np.arange(1,r), y_hat, 'go-', label="predict")
plt.plot(np.arange(1,r), y_test, 'co-', label="real")
plt.legend()
plt.show()
三、svm代码
1 线性支持向量机
#encoding=utf8
from sklearn.svm import LinearSVC def linearsvc_predict(train_data,train_label,test_data):
'''
input:train_data(ndarray):训练数据
train_label(ndarray):训练标签
output:predict(ndarray):测试集预测标签
'''
#********* Begin *********#
clf = LinearSVC(dual=False)
clf.fit(train_data,train_label)
predict = clf.predict(test_data)
#********* End *********#
return predict
2 非线性支持向量机
#encoding=utf8
from sklearn.svm import SVC def svc_predict(train_data,train_label,test_data,kernel):
'''
input:train_data(ndarray):训练数据
train_label(ndarray):训练标签
kernel(str):使用核函数类型:
'linear':线性核函数
'poly':多项式核函数
'rbf':径像核函数/高斯核
output:predict(ndarray):测试集预测标签
'''
#********* Begin *********#
clf =SVC(kernel=kernel)
clf.fit(train_data,train_label)
predict = clf.predict(test_data)
#********* End *********#
return predict
3 序列最小优化算法
#encoding=utf8
import numpy as np
class smo:
def __init__(self, max_iter=100, kernel='linear'):
'''
input:max_iter(int):最大训练轮数
kernel(str):核函数,等于'linear'表示线性,等于'poly'表示多项式
'''
self.max_iter = max_iter
self._kernel = kernel
#初始化模型
def init_args(self, features, labels):
self.m, self.n = features.shape
self.X = features
self.Y = labels
self.b = 0.0
# 将Ei保存在一个列表里
self.alpha = np.ones(self.m)
self.E = [self._E(i) for i in range(self.m)]
# 错误惩罚参数
self.C = 1.0
#********* Begin *********#
#kkt条件
def _KKT(self, i):
y_g = self._g(i)*self.Y[i]
if self.alpha[i] == 0:
return y_g >= 1
elif 0 < self.alpha[i] < self.C:
return y_g == 1
else:
return y_g <= 1
# g(x)预测值,输入xi(X[i])
def _g(self, i):
r = self.b
for j in range(self.m):
r += self.alpha[j]*self.Y[j]*self.kernel(self.X[i], self.X[j])
return r
# 核函数,多项式添加二次项即可
def kernel(self, x1, x2):
if self._kernel == 'linear':
return sum([x1[k]*x2[k] for k in range(self.n)])
elif self._kernel == 'poly':
return (sum([x1[k]*x2[k] for k in range(self.n)]) + 1)**2
return 0
# E(x)为g(x)对输入x的预测值和y的差
def _E(self, i):
return self._g(i) - self.Y[i]
#初始alpha
def _init_alpha(self):
# 外层循环首先遍历所有满足0<a<C的样本点,检验是否满足KKT
index_list = [i for i in range(self.m) if 0 < self.alpha[i] < self.C]
# 否则遍历整个训练集
non_satisfy_list = [i for i in range(self.m) if i not in index_list]
index_list.extend(non_satisfy_list)
for i in index_list:
if self._KKT(i):
continue
E1 = self.E[i]
# 如果E2是+,选择最小的;如果E2是负的,选择最大的
if E1 >= 0:
j = min(range(self.m), key=lambda x: self.E[x])
else:
j = max(range(self.m), key=lambda x: self.E[x])
return i, j
#选择alpha参数
def _compare(self, _alpha, L, H):
if _alpha > H:
return H
elif _alpha < L:
return L
else:
return _alpha
#训练
def fit(self, features, labels):
'''
input:features(ndarray):特征
label(ndarray):标签
'''
self.init_args(features, labels)
for t in range(self.max_iter):
i1, i2 = self._init_alpha()
# 边界
if self.Y[i1] == self.Y[i2]:
L = max(0, self.alpha[i1]+self.alpha[i2]-self.C)
H = min(self.C, self.alpha[i1]+self.alpha[i2])
else:
L = max(0, self.alpha[i2]-self.alpha[i1])
H = min(self.C, self.C+self.alpha[i2]-self.alpha[i1])
E1 = self.E[i1]
E2 = self.E[i2]
# eta=K11+K22-2K12
eta = self.kernel(self.X[i1], self.X[i1]) + self.kernel(self.X[i2], self.X[i2]) - 2*self.kernel(self.X[i1], self.X[i2])
if eta <= 0:
continue
alpha2_new_unc = self.alpha[i2] + self.Y[i2] * (E2 - E1) / eta
alpha2_new = self._compare(alpha2_new_unc, L, H)
alpha1_new = self.alpha[i1] + self.Y[i1] * self.Y[i2] * (self.alpha[i2] - alpha2_new)
b1_new = -E1 - self.Y[i1] * self.kernel(self.X[i1], self.X[i1]) * (alpha1_new-self.alpha[i1]) - self.Y[i2] * self.kernel(self.X[i2], self.X[i1]) * (alpha2_new-self.alpha[i2])+ self.b
b2_new = -E2 - self.Y[i1] * self.kernel(self.X[i1], self.X[i2]) * (alpha1_new-self.alpha[i1]) - self.Y[i2] * self.kernel(self.X[i2], self.X[i2]) * (alpha2_new-self.alpha[i2])+ self.b
if 0 < alpha1_new < self.C:
b_new = b1_new
elif 0 < alpha2_new < self.C:
b_new = b2_new
else:
# 选择中点
b_new = (b1_new + b2_new) / 2
# 更新参数
self.alpha[i1] = alpha1_new
self.alpha[i2] = alpha2_new
self.b = b_new
self.E[i1] = self._E(i1)
self.E[i2] = self._E(i2)
def predict(self, data):
'''
input:data(ndarray):单个样本
output:预测为正样本返回+1,负样本返回-1
'''
r = self.b
for i in range(self.m):
r += self.alpha[i] * self.Y[i] * self.kernel(data, self.X[i])
return 1 if r > 0 else -1
#********* End *********#
4 支持向量回归
#encoding=utf8
from sklearn.svm import SVR def svr_predict(train_data,train_label,test_data):
'''
input:train_data(ndarray):训练数据
train_label(ndarray):训练标签
output:predict(ndarray):测试集预测标签
'''
#********* Begin *********#
svr = SVR(kernel='rbf',C=100,gamma= 0.001,epsilon=0.1)
svr.fit(train_data,train_label)
predict = svr.predict(test_data) #********* End *********#
return predict
机器学习之支持向量机(python)的更多相关文章
- 机器学习算法与Python实践之(四)支持向量机(SVM)实现
机器学习算法与Python实践之(四)支持向量机(SVM)实现 机器学习算法与Python实践之(四)支持向量机(SVM)实现 zouxy09@qq.com http://blog.csdn.net/ ...
- 机器学习算法与Python实践之(三)支持向量机(SVM)进阶
机器学习算法与Python实践之(三)支持向量机(SVM)进阶 机器学习算法与Python实践之(三)支持向量机(SVM)进阶 zouxy09@qq.com http://blog.csdn.net/ ...
- 机器学习算法与Python实践之(二)支持向量机(SVM)初级
机器学习算法与Python实践之(二)支持向量机(SVM)初级 机器学习算法与Python实践之(二)支持向量机(SVM)初级 zouxy09@qq.com http://blog.csdn.net/ ...
- 机器学习之支持向量机(四):支持向量机的Python语言实现
注:关于支持向量机系列文章是借鉴大神的神作,加以自己的理解写成的:若对原作者有损请告知,我会及时处理.转载请标明来源. 序: 我在支持向量机系列中主要讲支持向量机的公式推导,第一部分讲到推出拉格朗日对 ...
- 机器学习之支持向量机(三):核函数和KKT条件的理解
注:关于支持向量机系列文章是借鉴大神的神作,加以自己的理解写成的:若对原作者有损请告知,我会及时处理.转载请标明来源. 序: 我在支持向量机系列中主要讲支持向量机的公式推导,第一部分讲到推出拉格朗日对 ...
- 机器学习之支持向量机(二):SMO算法
注:关于支持向量机系列文章是借鉴大神的神作,加以自己的理解写成的:若对原作者有损请告知,我会及时处理.转载请标明来源. 序: 我在支持向量机系列中主要讲支持向量机的公式推导,第一部分讲到推出拉格朗日对 ...
- 机器学习算法与Python实践之(七)逻辑回归(Logistic Regression)
http://blog.csdn.net/zouxy09/article/details/20319673 机器学习算法与Python实践之(七)逻辑回归(Logistic Regression) z ...
- 机器学习算法与Python实践之(五)k均值聚类(k-means)
机器学习算法与Python实践这个系列主要是参考<机器学习实战>这本书.因为自己想学习Python,然后也想对一些机器学习算法加深下了解,所以就想通过Python来实现几个比较常用的机器学 ...
- 机器学习算法与Python实践之(六)二分k均值聚类
http://blog.csdn.net/zouxy09/article/details/17590137 机器学习算法与Python实践之(六)二分k均值聚类 zouxy09@qq.com http ...
- 机器学习 Top 20 Python 开源项目
转自:http://mp.weixin.qq.com/s?__biz=MzA4MjEyNTA5Mw==&mid=2652565022&idx=1&sn=9aa035097120 ...
随机推荐
- 用webpack发布一个vue插件包
创建库 本来以为很简单,结果配置了webpack之后,运行build就报错了,似乎不认识es6语法,于是先后安装了几个包: @babel/core @babel/preset-env babel-lo ...
- centos7 安装mariadb、"systemctl status mariadb.service" and "journalctl -xe" for details
centos7 mariadb 安装 也可解决此错误:ob for mariadb.service failed because the control process exited with err ...
- DVWA靶场练习-Command Injection命令注入
Command Injection 原理 攻击者通过构造恶意参数,破坏命令的语句结构,从而达到执行恶意命令的目的.
- 《手把手教你》系列技巧篇(十七)-java+ selenium自动化测试-元素定位大法之By css上卷(详细教程)
1.简介 CSS定位方式和xpath定位方式基本相同,只是CSS定位表达式有其自己的格式.CSS定位方式拥有比xpath定位速度快,且比CSS稳定的特性.下面详细介绍CSS定位方式的使用方法.xpat ...
- filter,interceptor,controllerAdvice,aspect,controller执行顺序
1.filter,这是java的过滤器,和框架无关的,是所有过滤组件中最外层的,从粒度来说是最大的. 配置方式,有直接实现Filter+@component,@Bean+@configuration( ...
- Python语言系列-09-socket编程
简介 软件开发的架构 1.C/S架构(client-server) 2.B/S架构 (browser-server) 网络基础概念 网络三要素: 1.ip 2.port 3.通信协议:TCP.UDP ...
- STM32—IIC通信(软件实现底层函数)
使用GPIO引脚模拟SDA和SCL总线实现软件模拟IIC通信,IIC的具体通信协议层和物理层链接:IIC #ifndef __BSP_IIC_H #define __BSP_IIC_H #includ ...
- 一个命令搞定 Web 国际化
背景 随着出海的业务越来越多,web 应用面临越来越多的国际化的工作.如何高效,高质量的完成 Web 前端国际化工作,已经是摆在 web 前端同学的急需解决的问题. i18n-helper-cli 是 ...
- 【现学现卖】python小爬虫
1.给小表弟汇总一个院校列表,想来想去可以写一个小爬虫爬下来方便些,所以就看了看怎么用python写,到了基本能用的程度,没有什么特别的技巧,大多都是百度搜的,遇事不决问百度啦 2.基本流程就是: 用 ...
- NOIP 模拟 6 模板
题目 题解 这道题是一道启发式合并的题目,每次合并完重构一下线段树就可以,不用线段树合并. 以操作时间为下标,建立一颗线段树,维护小球的个数与小球的颜色数,最后线段树上二分查找. 我们先不用考虑每个节 ...