目录:
(一)图像的深度和图像的通道
 (1)图像的深度
 (2)图像的通道
(二)自定义一张多通道的图片
(1)zeros 函数
(2)ones  函数
(三)自定义一张单通道的图片
(四)像素操作
(1)numpy操作数组
(2)调用库函数
(五)opnecv 利用getTickCount()和getTickFrequency()计算执行时间
 
 
 
 
 正文:
(一)图像的深度和图像的通道
      (1)图像的深度
               图像中像素点占得bit位数,就是图像的深度,比如:
二值图像:图像的像素点不是0 就是1 (图像不是黑色就是白色),图像像素点占的位数就是 1 位,图像的深度就是1,也称作位图。
灰度图像:图像的像素点位于0-255之间,(0:全黑,255代表:全白,在0-255之间插入了255个等级的灰度)。2^8=255,图像的深度是8。
依次轮推,我们把计算机中存储单个像素点所用的 bit 位称为图像的深度。
     (2)图像的通道
             有了图像深度的概念,我们知道如果是24位的图像,则这个像素点的颜色的取值范围是:从0到2^24。这个范围特别大,如果我们知道了某店的像素值怎么判断像素点的颜色呢?我们知道 RGB是基本的三原色,如果我们用8位代表一种颜色,每种颜色最大是255,这样每个像素点的颜色值的范围就是(0-255,0-255,0-255)。这样图像的通道就是3。
灰度图的图像存储模型
 
灰度图像像素点的存储就是对应的原图从左到右,从上到下,依次排列,每个点的值就是就是像素点的值,每个点的地址就是像素像素点的地址。
RGB图的图像存储模型
RGB彩色图像和灰度图相比,每个像素点都有3个通道。每个通道占的内存空间都是8位。在内存中,RGB 图像的存储是以二维数组的形式。
学习图像的存储就是为了理解图像中像素点的存储情况,有助于我们对每个像素点的操作。
(二)自定义一张多通道的图片-----用到函数:zeros和ones
(1)zeros 函数
 1 # -*- coding=GBK -*-
2 import cv2 as cv
3 import numpy as np
4
5
6 def create_image():
7 img = np.zeros([400, 400, 3], np.uint8)#zeros:double类零矩阵 创建400*400 3个通道的矩阵图像 参数时classname为uint8
8 img[:, :, 0] = np.ones([400, 400])*255#ones([400, 400])是创建一个400*400的全1矩阵,*255即是全255矩阵 并将这个矩阵的值赋给img的第一维
9 img[:, :, 1] = np.ones([400, 400])*255#第二维全是255
10 img[:, :, 2] = np.ones([400, 400])*255#第三维全是255
11 cv.imshow("自制图片", img)#输出一张400*400的白色图片(255 255 255):蓝(B)、绿(G)、红(R)
12
13 create_image()
14 cv.waitKey(0)
15 cv.destroyAllWindows()

(2)ones  函数

 1 # -*- coding=GBK -*-
2 import cv2 as cv
3 import numpy as np
4
5
6 def create_image():
7 img = np.ones([400, 400, 3], np.uint8)
8 img[:, :, 0] = img[:, :, 0]*255
9 img[:, :, 1] = img[:, :, 1]*255
10 img[:, :, 2] = img[:, :, 2]*255
11 cv.imshow("自制图片", img)
12
13 create_image()
14 cv.waitKey(0)
15 cv.destroyAllWindows()

第8,9,10行换成

image[:, :, 0] = np.ones([400, 400]) * 255
image[:, :, 1] = np.ones([400, 400]) * 255
image[:, :, 2] = np.ones([400, 400]) * 255
建议 img[:, :, 2] = np.ones([400, 400])*255 这样赋值

(3)补充

 1 >>>from numpy import *
2 >>> a=zeros((3,4))
3 >>> a
4 array([[ 0., 0., 0., 0.],
5 [ 0., 0., 0., 0.],
6 [ 0., 0., 0., 0.]])
7 >>> from numpy import *
8 >>> a=ones((3,4))
9 >>> a
10 array([[ 1., 1., 1., 1.],
11 [ 1., 1., 1., 1.],
12 [ 1., 1., 1., 1.]])
13 >>> from numpy import *
14 >>> a=eye(3)
15 >>> a
16 array([[ 1., 0., 0.],
17 [ 0., 1., 0.],
18 [ 0., 0., 1.]])

(三)自定义一张单通道的图片

 1 # -*- coding=GBK -*-
2 import cv2 as cv
3 import numpy as np
4
5
6 def create_image():
7 img = np.ones([400, 400, 1], np.uint8)
8 img = img * 127
9 cv.imshow("自制图片", img)
10
11 create_image()
12 cv.waitKey(0)
13 cv.destroyAllWindows()
(四)像素操作
(1)numpy操作数组

读取一张图片,修改颜色通道后输出,可以得到图像的:行数,列数,通道数的矩阵,对矩阵进行操作可改变图像像素

 1 # -*- coding=GBK -*-
2 import cv2 as cv
3 import numpy as np
4
5
6 #numpy数组操作
7 def access_pixles(image):
8 print(image.shape)
9 height = image.shape[0]
10 width = image.shape[1]
11 channel = image.shape[2]
12 print("width : %s, height : %s, channel : %s" % (width, height, channel))
13 for row in range(height):
14 for col in range(width):
15 for c in range(channel):
16 pv = image[row, col, c]
17 image[row, col, c] = 255 - pv
18 cv.imshow("修改后", image)
19
20
21 src = cv.imread("C://1.jpg")
22 #cv.namedWindow("原来", cv.WINDOW_NORMAL)
23 cv.imshow("原来", src)
24 t1 = cv.getTickCount()#毫秒级别的计时函数,记录了系统启动以来的时间毫秒
25 access_pixles(src)
26 t2 = cv.getTickCount()
27 time = (t2 - t1)*1000/cv.getTickFrequency()#getTickFrequency用于返回CPU的频率,就是每秒的计时周期数
28 print("time: %s" % time)#输出运行的时间
29 cv.waitKey(0)
30 cv.destroyAllWindows()
(2)调用库函数
 1 # -*- coding=GBK -*-
2 import cv2 as cv
3 import numpy as np
4
5
6 #像素取反
7 def inverse(image):
8 dst = cv.bitwise_not(image)
9 cv.imshow("取反", dst)
10
11
12 src = cv.imread("C://1.jpg")
13 cv.namedWindow("原来", cv.WINDOW_NORMAL)
14 cv.imshow("原来", src)
15 t1 = cv.getTickCount()
16 inverse(src)
17 t2 = cv.getTickCount()
18 time = (t2 - t1)*1000/cv.getTickFrequency()
19 print("time: %s" % time)
20 cv.waitKey(0)
21 cv.destroyAllWindows()
(五)opnecv 利用getTickCount()和getTickFrequency()计算执行时间
t1 = cv.getTickCount()
picture_message(scr)
t2 = cv.getTickCount()
time = 1000*(t2-t1)/cv.getTickFrequency()
print('Time is %s ms'% time)

getTickCount():用于返回从操作系统启动到当前所经的计时周期数,看名字也很好理解,get Tick Count(s)。
getTickFrequency():用于返回CPU的频率。get Tick Frequency。这里的单位是秒,也就是一秒内重复的次数。

所以剩下的就很清晰了:
总次数/一秒内重复的次数 = 时间(s)
1000 *总次数/一秒内重复的次数= 时间(ms)

这个逻辑很清晰,没什么问题,但是这里有一个小坑,那就是C版本的cvGetTickFrequency()函数和C++版本的getTickFrequency()的单位不一样,前者以ms计算频率,后者以s为单位计算频率,所以如果使用C版本的cvGetTickFrequency()计算时间的话,应该是:
总次数/一秒内重复的次数*1000 = 时间(ms)
总次数/一秒内重复的次数= 时间(s)

参考:
https://blog.csdn.net/u013355826/article/details/64905921
https://blog.csdn.net/u011321546/article/details/79523115
https://www.cnblogs.com/jczhuang/p/9766950.html

python有关于图像的深度和通道的更多相关文章

  1. OpenCV——图像的深度与通道数讲解

    矩阵数据类型: – CV_(S|U|F)C S = 符号整型 U = 无符号整型 F = 浮点型 E.g.: CV_8UC1 是指一个8位无符号整型单通道矩阵, CV_32FC2是指一个32位浮点型双 ...

  2. TF-图像的深度和通道的概念(转)

    图像的深度和通道概念 图像的深度: 图片是由一个个像素点构成的,所有不同颜色的像素点构成了一副完整的图像,计算机存储图片是以二进制来进行的. 1 bit : 用一位来存储,那么这个像素点的取值范围就是 ...

  3. OpenCV3编程入门笔记(3)线性滤波、非线性滤波、图像深度、通道

    15     遍历图像中的像素,是先for行数后for列数的,也就是一列一列的遍历,matlab中是从1开始计数,opnecv中采用c语言的从0开始计数. 矩阵归一化:normalize()函数,参数 ...

  4. 跟我学Python图像处理丨图像特效处理:毛玻璃、浮雕和油漆特效

    摘要:本文讲解常见的图像特效处理,从而让读者实现各种各样的图像特殊效果,并通过Python和OpenCV实现. 本文分享自华为云社区<[Python图像处理] 二十四.图像特效处理之毛玻璃.浮雕 ...

  5. opencv-图像类型、深度、通道

    转自:图像类型   与  opencv中图像基础(大小,深度,通道) 一.图像基本类型 在计算机中,按照颜色和灰度的多少可以将图像分为四种基本类型. 1. 二值图像 2. 灰度图像 3. 索引图像 4 ...

  6. 【python图像处理】图像的缩放、旋转与翻转

    [python图像处理]图像的缩放.旋转与翻转 图像的几何变换,如缩放.旋转和翻转等,在图像处理中扮演着重要的角色,python中的Image类分别提供了这些操作的接口函数,下面进行逐一介绍. 1.图 ...

  7. 去除图像中的alpha通道或透明度

    自从appstore提交app改变后,虽然提交的流程还是和原来一样,但是相比以前还是有很大的改动,本来就不太喜欢 English,改版之后很多东西都变了,开发一个app就已经够他妈的蛋疼啦,上传一个a ...

  8. python 多进程处理图像,充分利用CPU

    默认情况下,Python程序使用一个CPU以单个进程运行.不过如果你是在最近几年配置的电脑,通常都是四核处理器,也就是有8个CPU.这就意味着在你苦苦等待Python脚本完成数据处理工作时,你的电脑其 ...

  9. 基于Ubuntu+Python+Tensorflow+Jupyter notebook搭建深度学习环境

    基于Ubuntu+Python+Tensorflow+Jupyter notebook搭建深度学习环境 前言一.环境准备环境介绍软件下载VMware下安装UbuntuUbuntu下Anaconda的安 ...

随机推荐

  1. 【MySQL】MySQL进阶(外键约束、多表查询、视图、备份与恢复)

    约束 外键约束 外键约束概念 让表和表之间产生关系,从而保证数据的准确性! 建表时添加外键约束 为什么要有外键约束 -- 创建db2数据库 CREATE DATABASE db2; -- 使用db2数 ...

  2. 洛谷3317 SDOI2014重建(高斯消元+期望)

    qwq 一开始想了个错的做法. 哎 直接开始说比较正确的做法吧. 首先我们考虑题目的\(ans\)该怎么去求 我们令\(x\)表示原图中的某一条边 \[ans = \sum \prod_{x\in t ...

  3. 其他css属性和特性

    其他css属性和特性 设置元素的颜色和透明度 下表列出了这些属性. 颜色相关属性 属 性 说 明 值 color 设置元素的前景色 <颜色> opacity 设置颜色的透明度 <数值 ...

  4. UDP接收端和发送端_Socket编程

    UDP接收端 接收端启动文件 1 import java.net.DatagramSocket; 2 import java.net.SocketException; 3 4 public class ...

  5. 安装早期老版本 Visual Studio

    安装早期老版本 Visual Studio https://visualstudio.microsoft.com/zh-hans/vs/older-downloads/

  6. DL4J实战之六:图形化展示训练过程

    欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 本篇概览 本篇是<DL4J实战>系列的第六 ...

  7. 【数学】快速傅里叶变换(FFT)

    快速傅里叶变换(FFT) FFT 是之前学的,现在过了比较久的时间,终于打算在回顾的时候系统地整理一篇笔记,有写错的部分请指出来啊 qwq. 卷积 卷积.旋积或褶积(英语:Convolution)是通 ...

  8. 什么,你还使用 webpack?别人都在用 vite 搭建项目了

    一.vite 到底是干嘛的? vite 实际上就是一个面向现代浏览器,基于 ES module 实现了一个更轻快的项目构建打包工具. vite 是法语中轻快的意思. vite 的特点: 1.轻快的冷服 ...

  9. 【UE4 C++】UObject 创建、销毁、内存管理

    UObject 的创建 NewObject 模板类 本例使用 UE 4.26,只剩下 NewObject 用来创建 UObject,提供两个带不同可选参数构造函数的模板类 Outer 表示这个对象的外 ...

  10. 第5次 Beta Scrum Meeting

    本次会议为Beta阶段第6次Scrum Meeting会议 会议概要 会议时间:2021年6月6日 会议地点:「腾讯会议」线上进行 会议时长:10min 会议内容简介:对完成工作进行阶段性汇报:对下一 ...