前面已经讲过了雪花算法,里面使用了System.currentTimeMillis()获取时间,有一种说法是认为System.currentTimeMillis()慢,是因为每次调用都会去跟系统打一次交道,在高并发情况下,大量并发的系统调用容易会影响性能(对它的调用甚至比new一个普通对象都要耗时,毕竟new产生的对象只是在Java内存中的堆中)。我们可以看到它调用的是native 方法:

// 返回当前时间,以毫秒为单位。注意,虽然返回值的时间单位是毫秒,但值的粒度取决于底层操作系统,可能更大。例如,许多操作系统以数十毫秒为单位度量时间。
public static native long currentTimeMillis();

所以有人提议,用后台线程定时去更新时钟,并且是单例的,避免每次都与系统打交道,也避免了频繁的线程切换,这样或许可以提高效率。

这个优化成立么?

先上优化代码:

package snowflake;
import java.util.concurrent.Executors;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicLong; public class SystemClock { private final int period; private final AtomicLong now; private static final SystemClock INSTANCE = new SystemClock(1); private SystemClock(int period) {
this.period = period;
now = new AtomicLong(System.currentTimeMillis());
scheduleClockUpdating();
} private void scheduleClockUpdating() {
ScheduledExecutorService scheduleService = Executors.newSingleThreadScheduledExecutor((r) -> {
Thread thread = new Thread(r);
thread.setDaemon(true);
return thread;
});
scheduleService.scheduleAtFixedRate(() -> {
now.set(System.currentTimeMillis());
}, 0, period, TimeUnit.MILLISECONDS);
} private long get() {
return now.get();
} public static long now() {
return INSTANCE.get();
} }

只需要用SystemClock.now()替换System.currentTimeMillis()即可。

雪花算法SnowFlake的代码也放在这里:

package snowflake;

public class SnowFlake {

    // 数据中心(机房) id
private long datacenterId;
// 机器ID
private long workerId;
// 同一时间的序列
private long sequence; public SnowFlake(long workerId, long datacenterId) {
this(workerId, datacenterId, 0);
} public SnowFlake(long workerId, long datacenterId, long sequence) {
// 合法判断
if (workerId > maxWorkerId || workerId < 0) {
throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
}
if (datacenterId > maxDatacenterId || datacenterId < 0) {
throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
}
System.out.printf("worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d",
timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId); this.workerId = workerId;
this.datacenterId = datacenterId;
this.sequence = sequence;
} // 开始时间戳(2021-10-16 22:03:32)
private long twepoch = 1634393012000L; // 机房号,的ID所占的位数 5个bit 最大:11111(2进制)--> 31(10进制)
private long datacenterIdBits = 5L; // 机器ID所占的位数 5个bit 最大:11111(2进制)--> 31(10进制)
private long workerIdBits = 5L; // 5 bit最多只能有31个数字,就是说机器id最多只能是32以内
private long maxWorkerId = -1L ^ (-1L << workerIdBits); // 5 bit最多只能有31个数字,机房id最多只能是32以内
private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits); // 同一时间的序列所占的位数 12个bit 111111111111 = 4095 最多就是同一毫秒生成4096个
private long sequenceBits = 12L; // workerId的偏移量
private long workerIdShift = sequenceBits; // datacenterId的偏移量
private long datacenterIdShift = sequenceBits + workerIdBits; // timestampLeft的偏移量
private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits; // 序列号掩码 4095 (0b111111111111=0xfff=4095)
// 用于序号的与运算,保证序号最大值在0-4095之间
private long sequenceMask = -1L ^ (-1L << sequenceBits); // 最近一次时间戳
private long lastTimestamp = -1L; // 获取机器ID
public long getWorkerId() {
return workerId;
} // 获取机房ID
public long getDatacenterId() {
return datacenterId;
} // 获取最新一次获取的时间戳
public long getLastTimestamp() {
return lastTimestamp;
} // 获取下一个随机的ID
public synchronized long nextId() {
// 获取当前时间戳,单位毫秒
long timestamp = timeGen(); if (timestamp < lastTimestamp) {
System.err.printf("clock is moving backwards. Rejecting requests until %d.", lastTimestamp);
throw new RuntimeException(String.format("Clock moved backwards. Refusing to generate id for %d milliseconds",
lastTimestamp - timestamp));
} // 去重
if (lastTimestamp == timestamp) { sequence = (sequence + 1) & sequenceMask; // sequence序列大于4095
if (sequence == 0) {
// 调用到下一个时间戳的方法
timestamp = tilNextMillis(lastTimestamp);
}
} else {
// 如果是当前时间的第一次获取,那么就置为0
sequence = 0;
} // 记录上一次的时间戳
lastTimestamp = timestamp; // 偏移计算
return ((timestamp - twepoch) << timestampLeftShift) |
(datacenterId << datacenterIdShift) |
(workerId << workerIdShift) |
sequence;
} private long tilNextMillis(long lastTimestamp) {
// 获取最新时间戳
long timestamp = timeGen();
// 如果发现最新的时间戳小于或者等于序列号已经超4095的那个时间戳
while (timestamp <= lastTimestamp) {
// 不符合则继续
timestamp = timeGen();
}
return timestamp;
} private long timeGen() {
return SystemClock.now();
// return System.currentTimeMillis();
} public static void main(String[] args) {
SnowFlake worker = new SnowFlake(1, 1);
long timer = System.currentTimeMillis();
for (int i = 0; i < 10000000; i++) {
worker.nextId();
}
System.out.println(System.currentTimeMillis());
System.out.println(System.currentTimeMillis() - timer);
}
}

Windows:i5-4590 16G内存 4核 512固态

Mac: Mac pro 2020 512G固态 16G内存

Linux:deepin系统,虚拟机,160G磁盘,内存8G

单线程环境测试一下 System.currentTimeMillis()

平台/数据量 10000 1000000 10000000 100000000
mac 5 247 2444 24416
windows 3 249 2448 24426
linux(deepin) 135 598 4076 26388

单线程环境测试一下 SystemClock.now()

平台/数据量 10000 1000000 10000000 100000000
mac 52 299 2501 24674
windows 56 3942 38934 389983
linux(deepin) 336 1226 4454 27639

上面的单线程测试并没有体现出后台时钟线程处理的优势,反而在windows下,数据量大的时候,变得异常的慢,linux系统上,也并没有快,反而变慢了一点。

多线程测试代码:

    public static void main(String[] args) throws InterruptedException {
int threadNum = 16;
CountDownLatch countDownLatch = new CountDownLatch(threadNum);
int num = 100000000 / threadNum;
long timer = System.currentTimeMillis();
thread(num, countDownLatch);
countDownLatch.await();
System.out.println(System.currentTimeMillis() - timer); } public static void thread(int num, CountDownLatch countDownLatch) {
List<Thread> threadList = new ArrayList<>();
for (int i = 0; i < countDownLatch.getCount(); i++) {
Thread cur = new Thread(new Runnable() {
@Override
public void run() {
SnowFlake worker = new SnowFlake(1, 1);
for (int i = 0; i < num; i++) {
worker.nextId();
}
countDownLatch.countDown();
}
});
threadList.add(cur);
}
for (Thread t : threadList) {
t.start();
}
}

下面我们用不同线程数来测试 100000000(一亿) 数据量 System.currentTimeMillis()

平台/线程 2 4 8 16
mac 14373 6132 3410 3247
windows 12408 6862 6791 7114
linux 20753 19055 18919 19602

用不同线程数来测试 100000000(一亿) 数据量 SystemClock.now()

平台/线程 2 4 8 16
mac 12319 6275 3691 3746
windows 194763 110442 153960 174974
linux 26516 25313 25497 25544

在多线程的情况下,我们可以看到mac上没有什么太大变化,随着线程数增加,速度还变快了,直到超过 8 的时候,但是windows上明显变慢了,测试的时候我都开始刷起了小视频,才跑出来结果。而且这个数据和处理器的核心也是相关的,当windows的线程数超过了 4 之后,就变慢了,原因是我的机器只有四核,超过了就会发生很多上下文切换的情况。

linux上由于虚拟机,核数增加的时候,并无太多作用,但是时间对比于直接调用 System.currentTimeMillis()其实是变慢的。

但是还有个问题,到底不同方法调用,时间重复的概率哪一个大呢?

    static AtomicLong atomicLong = new AtomicLong(0);
private long timeGen() {
atomicLong.incrementAndGet();
// return SystemClock.now();
return System.currentTimeMillis();
}

下面是1千万id,八个线程,测出来调用timeGen()的次数,也就是可以看出时间冲突的次数:

平台/方法 SystemClock.now() System.currentTimeMillis()
mac 23067209 12896314
windows 705460039 35164476
linux 1165552352 81422626

可以看出确实SystemClock.now()自己维护时间,获取的时间相同的可能性更大,会触发更多次数的重复调用,冲突次数变多,这个是不利因素!还有一个残酷的事实,那就是自己定义的后台时间刷新,获取的时间不是那么的准确。在linux中的这个差距就更大了,时间冲突次数太多了。

结果

实际测试下来,并没有发现SystemClock.now()能够优化很大的效率,反而会由于竞争,获取时间冲突的可能性更大。JDK开发人员真的不傻,他们应该也经过了很长时间的测试,比我们自己的测试靠谱得多,因此,个人观点,最终证明这个优化并不是那么的可靠。

不要轻易相信某一个结论,如果有疑问,请一定做做实验,或者找足够权威的说法。

【作者简介】

秦怀,公众号【秦怀杂货店】作者,技术之路不在一时,山高水长,纵使缓慢,驰而不息。个人写作方向:Java源码解析JDBCMybatisSpringredis分布式剑指OfferLeetCode等,认真写好每一篇文章,不喜欢标题党,不喜欢花里胡哨,大多写系列文章,不能保证我写的都完全正确,但是我保证所写的均经过实践或者查找资料。遗漏或者错误之处,还望指正。

剑指Offer全部题解PDF

2020年我写了什么?

开源编程笔记

雪花算法对System.currentTimeMillis()优化真的有用么?的更多相关文章

  1. 高并发场景下System.currentTimeMillis()的性能问题的优化 以及SnowFlakeIdWorker高性能ID生成器

    package xxx; import java.sql.Timestamp; import java.util.concurrent.*; import java.util.concurrent.a ...

  2. 高并发场景下System.currentTimeMillis()的性能问题的优化

    高并发场景下System.currentTimeMillis()的性能问题的优化 package cn.ucaner.alpaca.common.util.key; import java.sql.T ...

  3. 高并发场景下System.currentTimeMillis()的性能优化

    一.前言 System.currentTimeMillis()的调用比new一个普通对象要耗时的多(具体耗时高出多少我也不知道,不过听说在100倍左右),然而该方法又是一个常用方法, 有时不得不使用, ...

  4. 全局唯一iD的生成 雪花算法详解及其他用法

    一.介绍 雪花算法的原始版本是scala版,用于生成分布式ID(纯数字,时间顺序),订单编号等. 自增ID:对于数据敏感场景不宜使用,且不适合于分布式场景.GUID:采用无意义字符串,数据量增大时造成 ...

  5. ID 生成器 雪花算法

    https://blog.csdn.net/wangming520liwei/article/details/80843248 ID 生成器 雪花算法 2018年06月28日 14:58:43 wan ...

  6. 分布式系统-主键唯一id,订单编号生成-雪花算法-SnowFlake

    分布式系统下 我们每台设备(分布式系统-独立的应用空间-或者docker环境) * SnowFlake的优点是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由数据中心ID和机器ID作 ...

  7. 使用雪花算法为分布式下全局ID、订单号等简单解决方案考虑到时钟回拨

    1.snowflake简介         互联网快速发展的今天,分布式应用系统已经见怪不怪,在分布式系统中,我们需要各种各样的ID,既然是ID那么必然是要保证全局唯一,除此之外,不同当业务还需要不同 ...

  8. 全局ID生成--雪花算法

    分布式ID常见生成策略: 分布式ID生成策略常见的有如下几种: 数据库自增ID. UUID生成. Redis的原子自增方式. 数据库水平拆分,设置初始值和相同的自增步长. 批量申请自增ID. 雪花算法 ...

  9. 分布式Snowflake雪花算法

    前言 项目中主键ID生成方式比较多,但是哪种方式更能提高的我们的工作效率.项目质量.代码实用性以及健壮性呢,下面作了一下比较,目前雪花算法的优点还是很明显的. 优缺点比较 UUID(缺点:太长.没法排 ...

随机推荐

  1. DPARAM

    中M_电子科技大学_计算机组成原理 双端口RAM Dual Port Access RAM 存储器不断接受CPU访问,还要频繁地和I/O设备通信.如果只有一套MAR,ID,MDR和读写电路.任一时刻只 ...

  2. Kubernetes client-go 源码分析 - Reflector

    概述入口 - Reflector.Run()核心 - Reflector.ListAndWatch()Reflector.watchHandler()NewReflector()小结 概述 源码版本: ...

  3. 【UE4 C++】定时器 Timer 与事件绑定

    概念 定时执行操作,可执行一次,或循环执行直到手动终止 定时器在全局定时器管理器(FTimerManager 类型)中管理.全局定时器管理器存在于 游戏实例 对象上以及每个 场景 中 定时器需要绑定委 ...

  4. try-catch-finally面试题

    try catch finally 执行顺序面试题总结 执行顺序 今天牛客网遇到这个题目,做对了,但是下面的评论却很值得看看 public class TestTry { public int add ...

  5. aritest发送测试报告到邮件

    #!/usr/bin/env python # -*- coding=utf-8 -*- __CreateAt__ = '2020/4/19-17:34' import shutil from air ...

  6. 【二食堂】Beta - 测试报告

    Beta - 测试报告 测试过程中发现的bug Beta阶段的新bug 我们在Beta阶段的开发过程中就进行了测试,发现了许多bug.这其中后端的bug比较多,在这里我列举一些比较重要的功能性bug. ...

  7. AIApe问答机器人Scrum Meeting 4.27

    Scrum Meeting 3 日期:2021年4月27日 会议主要内容概述:汇报两日工作. 一.进度情况 组员 负责 两日内已完成的工作 后两日计划完成的工作 工作中遇到的困难 李明昕 后端 Tas ...

  8. DC综合与Tcl语法结构概述

    转载:https://www.cnblogs.com/IClearner/p/6617207.html 1.逻辑综合的概述 synthesis = translation + logic optimi ...

  9. Linux Kernel 記憶體管理機制之美<转>

    转自--http://five.rdaili.com/sohu.com.php?u=Mq3EniVnae0axim7jkGhH0IhA9uho6CQso7R1aYomXWJ9UemfwUQYmKRc8 ...

  10. C++中gSOAP的使用

    目录 SOAP简介 gSOAP 准备工作 头文件 构建客户端应用程序 生成soap源码 建立客户端项目 构建服务端应用程序 生成SOAP源码 建立服务端项目 打印报文 SOAP测试 项目源码 本文主要 ...