当1为$a_{i}$中出现次数最多的元素(之一),则有以下结论——

结论:$a_{i}$合法当且仅当$P\not\mid \sum_{i=1}^{n}a_{i}$且$\sum_{i=1}^{n}[a_{i}=1]\le (P-1)+\sum_{1\le i\le n,a_{i}\ne 1}(P-a_{i})$

证明:

必要性——

若$P\mid \sum_{i=1}^{n}a_{i}$,则取整体作为前缀即不满足条件

同时,当1的个数多于该值,假设有$k$个非1的数(即$\sum_{i=1}^{n}[a_{i}\ne 1]$),则$\sum_{i=1}^{n}a_{i}\ge (k+1)P$

根据$P\not\mid \sum_{i=1}^{n}a_{i}$,即$\sum_{i=1}^{n}a_{i}>(k+1)P$

考虑求其前缀和,对于其中前缀和恰大于$P$、$2P$、……、$(k+1)P$的位置(不难证明这些位置必然存在且各不相同),若恰大于$tP$的位置上为1,同时其上一个位置必然小于等于$tP$,即恰好为$tP$,即不合法

因此,这些位置上必然都不为1,因此至少有$k+1$个非1的数,矛盾

充分性——

构造其重新排列后的$a'_{i}$,具体来说,当已经确定$a'_{1},a'_{2},...,a'_{k}$后,来确定$a'_{k+1}$

令$x$为$a_{i}$剩下(除去$a'_{1},a'_{2},...,a'_{k}$)的数中出现次数最多的元素(之一),对其分类讨论:

1.若$P\not\mid \sum_{i=1}^{k}a'_{i}+x$,令$a'_{k+1}=x$

2.若$P\mid \sum_{i=1}^{k}a'_{i}+x$,任取另一个剩下的元素$y\ne x$,令$a'_{k+1}=y$且$a'_{k+2}=x$

关于上述两者,唯一有可能导致其不合法的即第2类中不存在$y$的情况,即仅剩下的元素仅含$x$

若剩下的元素中仅有1个$x$,即与$P\not\mid \sum_{i=1}^{n}a_{i}$矛盾,因此至少剩下两个$x$

在这种情况下,构造过程中,任意时刻出现次数最多(且唯一最多)的元素都是$x$

关于这个结论,考虑当某一时刻,某一个元素出现次数大于等于$x$出现次数-1,则简单分类讨论:

1.此时$x$作为出现次数最多的元素,其出现次数必然仍大于等于$x$出现次数-1

2.此时$x$不作为出现次数最多的元素,则假设为$y$,至多使用一个$y$,那么$y$出现次数大于等于$x$出现次数-1

换言之,由此可以说明之后任意时刻都存在一个元素出现次数大于等于$x$的出现次数-1

而最终,不存在这样的元素(其余元素出现次数都为0,而$x$出现次数至少为2),因此即任意时刻不存在出现次数大于等于$x$出现次数-1的元素,进而推出$x$任意时刻都是唯一最多的元素

由此,可以得到$x$为初始状态中出现次数最多的元素,即有$x=1$

根据构造过程,可以发现$a_{i}$之后恰好会有$P-a_{i}$个1,以及最初也必然有$P-1$个1,此时若还有剩下的1,即可得到$\sum_{i=1}^{n}[a_{i}=1]>(P-1)+\sum_{1\le i\le n,a_{i}\ne 1}(P-a_{i})$,矛盾

因此,即证明不存在这种不合法的情况,构造成立

而对于普通的序列$a_{i}$(即1不为$a_{i}$中出现次数最多的元素),若$x$为其中出现次数最多的元素,将所有元素在模$P$意义下除以$x$,得到序列$b_{i}\equiv \frac{a_{i}}{x}(mod\ P)$,不难证明$a_{i}$合法等价于$b_{i}$合法

同时,$b_{i}$合法根据结论即等价于$P\not\mid \sum_{i=1}^{n}b_{i}$且$\sum_{i=1}^{n}[b_{i}=1]\le (P-1)+\sum_{1\le i\le n,b_{i}\ne 1}(P-b_{i})$,同时前者又等价于$P\not\mid \sum_{i=1}^{n}a_{i}$

接下来,考虑统计答案,答案可以通过容斥计算,即等于$P\not\mid \sum_{i=1}^{n}a_{i}$的序列数,减去$P\not\mid \sum_{i=1}^{n}a_{i}$且$\sum_{i=1}^{n}[b_{i}=1]>(P-1)+\sum_{1\le i\le n,b_{i}\ne 1}(P-b_{i})$的序列数

对于前者,记为$f_{n}$,则有
$$
f_{n}=(P-2)f_{n-1}+(P-1)((P-1)^{n-1}-f_{n-1})=(P-1)^{n}-f_{n-1}
$$
(初始状态为$f_{0}=0$)

根据等比数列求和,答案即
$$
f_{n}=(-1)^{n}\sum_{i=1}^{n}(1-P)^{i}=(-1)^{n}\frac{(1-P)-(1-P)^{n+1}}{P}=\frac{(P-1)^{n+1}-(-1)^{n}(P-1)}{P}
$$
对于后者,根据式子,此时$a_{i}$中最大值出现必然唯一

另一方面,由于一个模$P$意义下的完系中所有数乘上$x$(满足$P\not\mid x$)后仍然是完系,即最大值并不影响每一个数出现的概率(情况),即可以统计1为出现次数最多的情况,并乘上$P-1$即可

(更通俗的来说,在$[1,P)$中随机一个数在乘上$x$并对$P$取模,等价于直接在$[1,P)$中随机一个数)

接下来,枚举1的个数$k$,即要求$\sum_{1\le i\le n,a_{i}\ne 1}(P-a_{i})-k\not\mid P$且$\sum_{1\le i\le n,a_{i}\ne 1}(P-a_{i})\le k-P$

根据后者,这些数的和是$o(n)$的,即用$f_{i,j}$表示$i$个$[1,P-2]$之间的数,和为$j$的方案数,注意到两维都是$o(n)$级别的,且转移通过前缀和可以优化到$o(1)$,总复杂度即$o(n^{2})$

最终,(这一部分)答案即$\sum_{i=0}^{n}{n\choose i}\sum_{0\le j\le i-P,j\not\equiv i(mod\ P)}f_{n-i,j}$

总复杂度为$o(n^{2})$,可以通过

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 5005
4 #define mod 998244353
5 int n,p,ans,c[N][N],f[N][N];
6 int pow(int n,int m){
7 int s=n,ans=1;
8 while (m){
9 if (m&1)ans=1LL*ans*s%mod;
10 s=1LL*s*s%mod;
11 m>>=1;
12 }
13 return ans;
14 }
15 int main(){
16 for(int i=0;i<N;i++){
17 c[i][0]=c[i][i]=1;
18 for(int j=1;j<i;j++)c[i][j]=(c[i-1][j-1]+c[i-1][j])%mod;
19 }
20 scanf("%d%d",&n,&p);
21 ans=pow(p-1,n+1);
22 if (n&1)ans=(ans+p-1)%mod;
23 else ans=(ans+mod-p+1)%mod;
24 ans=1LL*ans*pow(p,mod-2)%mod;
25 f[0][0]=1;
26 if ((n%p)&&(n>=p))ans=(ans+mod-p+1)%mod;
27 for(int i=1;i<=n;i++){
28 for(int j=1;j<=n;j++)f[i-1][j]=(f[i-1][j-1]+f[i-1][j])%mod;
29 for(int j=1;j<=n;j++){
30 if (j-(p-2)<=0)f[i][j]=f[i-1][j-1];
31 else f[i][j]=(f[i-1][j-1]-f[i-1][j-(p-2)-1]+mod)%mod;
32 if ((j<=n-i-p)&&(j%p!=(n-i)%p))ans=(ans+mod-1LL*(p-1)*c[n][i]%mod*f[i][j]%mod)%mod;
33 }
34 }
35 printf("%d",ans);
36 }

[atAGC052C]Nondivisible Prefix Sums的更多相关文章

  1. 【题解】【数组】【Prefix Sums】【Codility】Genomic Range Query

    A non-empty zero-indexed string S is given. String S consists of N characters from the set of upper- ...

  2. 【题解】【数组】【Prefix Sums】【Codility】Passing Cars

    A non-empty zero-indexed array A consisting of N integers is given. The consecutive elements of arra ...

  3. Codeforces 837F Prefix Sums

    Prefix Sums 在 n >= 4时候直接暴力. n <= 4的时候二分加矩阵快速幂去check #include<bits/stdc++.h> #define LL l ...

  4. CodeForces 837F - Prefix Sums | Educational Codeforces Round 26

    按tutorial打的我血崩,死活挂第四组- - 思路来自FXXL /* CodeForces 837F - Prefix Sums [ 二分,组合数 ] | Educational Codeforc ...

  5. Educational Codeforces Round 26 [ D. Round Subset ] [ E. Vasya's Function ] [ F. Prefix Sums ]

    PROBLEM D - Round Subset 题 OvO http://codeforces.com/contest/837/problem/D 837D 解 DP, dp[i][j]代表已经选择 ...

  6. CodeForces 1204E"Natasha, Sasha and the Prefix Sums"(动态规划 or 组合数学--卡特兰数的应用)

    传送门 •参考资料 [1]:CF1204E Natasha, Sasha and the Prefix Sums(动态规划+组合数) •题意 由 n 个 1 和 m 个 -1 组成的 $C_{n+m} ...

  7. CF1303G Sum of Prefix Sums

    点分治+李超树 因为题目要求的是树上所有路径,所以用点分治维护 因为在点分治的过程中相当于将树上经过当前$root$的一条路径分成了两段 那么先考虑如何计算两个数组合并后的答案 记数组$a$,$b$, ...

  8. GenomicRangeQuery /codility/ preFix sums

    首先上题目: A DNA sequence can be represented as a string consisting of the letters A, C, G and T, which ...

  9. codeforces:Prefix Sums分析和实现

    题目大意: 给出一个函数P,P接受一个数组A作为参数,并返回一个新的数组B,且B.length = A.length + 1,B[i] = SUM(A[0], ..., A[i]).有一个无穷数组序列 ...

随机推荐

  1. mysql通过logstash同步数据到es

    大小写问题很严重 input 1.statement:mysql的连接使用 jdk版本有强要求 2.jdbc_driver_library:jar包的版本有对应要求 3.jdbc_driver_cla ...

  2. Python技法2:函数参数的进阶用法

    1.关键字参数(positional argument)和位置参数(keyword argument) Python函数的参数根据函数在调用时(注意,不是函数定义时)传参的形式分为关键字参数和位置参数 ...

  3. vue介绍啊

    声明式渲染:vue的核心是一个允许你才用一个简洁的模板语法来声明式的将数据渲染进行DOM的系统 html部分:<div id="app"> {{message}}< ...

  4. Codeforces1573B

    ### 问题描述 - 给你两个数组,a数组里面是1 - 2n中的奇数任意顺序排列组成,b数组里面是1 - 2n中的奇数任意顺序排列组成. - 问你最少需要多少次操作能让a的字典序小于b. ### 思路 ...

  5. 第5次 Beta Scrum Meeting

    本次会议为Beta阶段第6次Scrum Meeting会议 会议概要 会议时间:2021年6月6日 会议地点:「腾讯会议」线上进行 会议时长:10min 会议内容简介:对完成工作进行阶段性汇报:对下一 ...

  6. 自定义注解结合切面和spel表达式

    在我们的实际开发中可能存在这么一种情况,当方法参数中的某些条件成立的时候,需要执行一些逻辑处理,比如输出日志.而这些代码可能都是差不多的,那么这个时候就可以结合自定义注解加上切面加上spel表达式进行 ...

  7. Noip模拟4(忁靈霁) 2021.6.6

    T1 随(Rand) 由杠哥大定理可得,这题目前不可做,先跳走啦,咕咕.... T2 单(single) 考场上,简单看一眼就看出是个高斯消元,然后..... 板子没记住!!! 然而这不是最糟糕的.. ...

  8. PWM通过RC低通滤波器模拟DAC

    当我们电路需要DAC而单片机并没有DAC外设时,则可采用PWM通过RC低通滤波器来模拟实现DAC功能. RC低通滤波器 当采用低通滤波器模拟DAC时,PWM频率应远大于RC低通滤波电路的截止频率fc= ...

  9. SI Macro

    获取 buf 里的 symbol cbuf = BufListCount() msg(cbuf) ibuf = 0 while (ibuf < cbuf) { hbuf = BufListIte ...

  10. cf12D Ball(MAP,排序,贪心思想)

    题意: N位女士一起聚在一个舞厅.每位女士有三个特征值B,I,R.分别代表美貌,智慧,富有. 对于一位女士而言,如果存在一个女士的B,I,R都分别大于她自己的B,I,R.则她自己会自杀. 统计总共有多 ...