令$f_{i,j}$表示以$i$为根的子树中,深度小于等于$j$的概率,那么$ans_{i}=\sum_{j=1}^{dep}(f_{i,j}-f_{i,j-1})j$

大约来估计一下$f_{i,j}$的大小,较坏情况下是$\lfloor\frac{n-1}{j}\rfloor$个深度为$j$的节点(若选择有公共部分,虽然会增加节点数但并实际边的数量减少),即可以认为$f_{i,j}\ge (1-\frac{1}{2^{j}})^{\lfloor\frac{n-1}{j}\rfloor}$

其在$j\ge 60$时,可以认为$f_{i,j}=1$,代入$ans_{i}$的式子即$j>60$的部分不需要计算

因此此时状态数为$o(Dn)$(其中$D=60$),接下来考虑如何维护

如果对其暴力dp,转移为$f_{i,j}=\frac{1}{2}f_{i,j}(1+f_{son,j-1})$,那么当插入节点的$k$,显然会修改$f_{fa_{k},0}$、$f_{fa_{fa_{k}},1}$等位置,因此插入复杂度为$o(D)$,查询时对该位置$f$求和同样为$o(D)$

总复杂度为$o(Dn)$,可以通过

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 500005
4 #define D 50
5 vector<int>v;
6 int V,n,p,x,fa[N];
7 double ans,f[N][D+5];
8 void New(int k){
9 fa[++V]=k;
10 for(int i=0;i<=D;i++)f[V][i]=1;
11 }
12 int main(){
13 scanf("%d",&n);
14 New(0);
15 for(int i=1;i<=n;i++){
16 scanf("%d%d",&p,&x);
17 if (p==1){
18 New(x);
19 for(int j=1,k=x;(j<=D)&&(k);j++,k=fa[k])v.push_back(k);
20 while (v.size()){
21 f[fa[v.back()]][v.size()]/=1+f[v.back()][(int)v.size()-1];
22 v.pop_back();
23 }
24 f[x][0]/=2;
25 for(int j=1,k=x;(j<=D)&&(k);j++,k=fa[k])f[fa[k]][j]*=1+f[k][j-1];
26 }
27 else{
28 ans=0;
29 for(int j=1;j<=D;j++)ans+=(f[x][j]-f[x][j-1])*j;
30 printf("%.9f\n",ans);
31 }
32 }
33 }

[cf674E]Bear and Destroying Subtrees的更多相关文章

  1. CF643E. Bear and Destroying Subtrees 期望dp

    题目链接 CF643E. Bear and Destroying Subtrees 题解 dp[i][j]表示以i为根的子树中,树高小于等于j的概率 转移就是dp[i][j] = 0.5 + 0.5 ...

  2. CF 643 E. Bear and Destroying Subtrees

    E. Bear and Destroying Subtrees http://codeforces.com/problemset/problem/643/E 题意: Q个操作. 加点,在原来的树上加一 ...

  3. 笔记-CF643E Bear and Destroying Subtrees

    CF643E Bear and Destroying Subtrees 设 \(f_{i,j}\) 表示节点 \(i\) 的子树深度为 \(\le j\) 的概率,\(ch_i\) 表示 \(i\) ...

  4. Codeforces.643E.Bear and Destroying Subtrees(DP 期望)

    题目链接 \(Description\) 有一棵树.Limak可以攻击树上的某棵子树,然后这棵子树上的每条边有\(\frac{1}{2}\)的概率消失.定义 若攻击以\(x\)为根的子树,高度\(ht ...

  5. CF643E Bear and Destroying Subtrees

    题解 我们可以先写出\(dp\)式来. 设\(dp[u][i]\)表示以\(u\)为根的子树深度不超过\(i-1\)的概率 \(dp[u][i]=\prod (dp[v][i-1]+1)*\frac{ ...

  6. [CF643E]Bear and Destroying Subtrees(期望,忽略误差)

    Description: ​ 给你一棵初始只有根为1的树 ​ 两种操作 ​ 1 x 表示加入一个新点以 x为父亲 ​ 2 x 表示以 x 为根的子树期望最深深度 ​ 每条边都有 \(\frac{1}{ ...

  7. 一句话题解&&总结

    CF79D Password: 差分.两点取反,本质是匹配!最短路+状压DP 取反是套路,匹配是发现可以把操作进行目的化和阶段化,从而第二次转化问题. 且匹配不会影响别的位置答案 sequence 计 ...

  8. Codeforces Round #318 [RussianCodeCup Thanks-Round] (Div. 1) B. Bear and Blocks 水题

    B. Bear and Blocks Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/573/pr ...

  9. 【32.89%】【codeforces 574D】Bear and Blocks

    time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...

随机推荐

  1. java设计模式_单例模式

    懒汉式 非线程安全 特点:Lazy 初始化.非多线程安全.易实现 描述:这种方式是最基本的实现方式,这种实现最大的问题就是不支持多线程.因为没有加锁 synchronized,所以严格意义上它并不算单 ...

  2. MIPS流水线技术

    华中科技大学 - 计算机硬件系统设计 单周期指令运行动态 Instruction Fetch Instruction Decode Execution MEM Write Back 单周期时空图 设耗 ...

  3. Oracle12C安装教程

    准备工作 网盘链接: https://pan.baidu.com/s/1gffHbOjImk1SfezdWO2Bpw 提取码: imft Oracle12C的安装 1.分别解压"winx64 ...

  4. 【原创】Linux v4l2框架分析

    背景 Read the fucking source code! --By 鲁迅 A picture is worth a thousand words. --By 高尔基 说明: Kernel版本: ...

  5. 在Vue前端项目中,附件展示的自定义组件开发

    在Vue前端界面中,自定义组件很重要,也很方便,我们一般是把一些通用的界面模块进行拆分,创建自己的自定义组件,这样操作可以大大降低页面的代码量,以及提高功能模块的开发效率,本篇随笔继续介绍在Vue&a ...

  6. 2021.8.19考试总结[NOIP模拟44]

    T1 emotional flutter 把脚长合到黑条中. 每个黑条可以映射到统一区间,实际操作就是左右端点取模.长度大于$k$时显然不合法. 然后检查一遍区间内有没有不被黑条覆盖的点即可. 区间端 ...

  7. 开关电源(DC-DC)与LDO电源的区别---纹波

    https://blog.csdn.net/edadoc2013/article/details/78435775

  8. STM32时钟系统之利用 systick 定时器来实现准确的延时。

    本篇文章带着大家来认识一下 STM32 的时钟系统,以及利用 systick 定时器来实现一个比较准确的延时. 我们首先从时钟说起,时钟在MCU中的作用,就好比于人类的心脏一样不可或缺.STM32 的 ...

  9. C++ string类型小结

    目录 构造函数 string.append() string.assign() string.at() string.back() string.begin() string.capasity() s ...

  10. Github点赞超多的Spring Boot学习教程+实战项目推荐!

    Github点赞接近 100k 的Spring Boot学习教程+实战项目推荐!   很明显的一个现象,除了一些老项目,现在 Java 后端项目基本都是基于 Spring Boot 进行开发,毕竟它这 ...