【golang必备算法】 Letecode 146. LRU 缓存机制
力扣链接:146. LRU 缓存机制
思路:哈希表 + 双向链表
为什么必须要用双向链表?
因为我们需要删除操作。删除一个节点不光要得到该节点本身的指针,也需要操作其前驱节点的指针,而双向链表才能支持直接查找前驱,保证操作的时间复杂度 O(1)。
为什么要在链表中同时存储 key 和 val,而不是只存储 val?
当缓存容量已满,我们不仅仅要删除最后一个节点,还要把哈希表 中映射到该节点的 key 同时删除,而这个 key 只能由 节点得到。如果 节点结构中只存储 val,那么我们就无法得知 key 是什么,就无法删除 哈希表中的键,造成错误。
代码
我这里是向尾部添加数据,所以头部的是不活跃的数据值
type LRUCache struct { //LRU 缓存结构
capacity int // 容量
m map[int]*Node //哈希表
cache *NodeList //双向链表
}
type Node struct{ //节点结构
key int
value int
prev *Node //前一个节点
next *Node //后一个节点
}
func initNode(key,value int)*Node{ //初始化节点
return &Node{
key:key,
value:value,
}
}
type NodeList struct{ //链表结构
head *Node //链表头节点
last *Node //链表尾节点
size int //元素个数
}
func initList ()*NodeList{ //初始化链表
dil:=&NodeList{
head:initNode(0,0),
last:initNode(0,0),
size:0,
}
dil.head.next=dil.last
dil.last.prev=dil.head
return dil
}
func (this *NodeList)addNodeinlist(node *Node){ //向链表中插入节点,向链表尾部插节点
node.prev=this.last.prev
this.last.prev=node
node.prev.next=node
node.next=this.last
this.size++
}
func (this *NodeList)deleteNodeinlist (node *Node){ //删除链表中的某一结点
node.prev.next=node.next
node.next.prev=node.prev
node.next=nil
node.prev=nil
this.size--
}
func (this *NodeList)delfirstNode()*Node{ //删除第一个节点,并且返回
if this.head.next==this.last{
return nil
}
t:=this.head.next
this.deleteNodeinlist(t)
return t
}
func Constructor(capacity int) LRUCache { //初始化 LRU 缓存
return LRUCache{
capacity:capacity,
m:make(map[int]*Node,0),
cache:initList(),
}
}
func (this *LRUCache)addkey(key,value int){ //添加元素
node:=initNode(key,value)
//增加map映射
this.m[key]=node
//在链表中添加元素
this.cache.addNodeinlist(node)
}
func (this *LRUCache)makekey(key int){ // 将某个 key 调整为最近使用的元素
//找到节点
node:=this.m[key]
//删除节点
this.cache.deleteNodeinlist(node)
// 添加到链表尾部
this.cache.addNodeinlist(node)
}
func (this *LRUCache)deletekey(key int){ //删除元素
//删除链表中节点
this.cache.deleteNodeinlist(this.m[key])
//删除map映射
delete(this.m,key)
}
func (this *LRUCache)deletefirkey(){ //删除最久未使用的元素
// 链表的第一个就是最近最少使用的元素
node:=this.cache.delfirstNode()
// 删除映射
delete(this.m,node.key)
}
func (this *LRUCache) Get(key int) int {
if _,ok:=this.m[key];ok{
//存在
this.makekey(key) //将某个 key 调整为最近使用的元素
return this.m[key].value
}else{
//不存在
return -1
}
}
func (this *LRUCache) Put(key int, value int) {
// 检查key存不存在
if _,ok:=this.m[key];ok{
//存在
//删除元素
this.deletekey(key)
//添加元素到尾部
this.addkey(key,value)
}else{
//不存在
if this.capacity==this.cache.size{
//缓存达到上限
//删除最久未使用的元素
this.deletefirkey()
}
//添加元素到尾部
this.addkey(key,value)
}
}
参考:
https://leetcode-cn.com/problems/lru-cache/solution/jian-dan-shi-li-xiang-xi-jiang-jie-lru-s-exsd/
【golang必备算法】 Letecode 146. LRU 缓存机制的更多相关文章
- Java实现 LeetCode 146 LRU缓存机制
146. LRU缓存机制 运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制.它应该支持以下操作: 获取数据 get 和 写入数据 put . 获取数据 get(key) - ...
- 力扣 - 146. LRU缓存机制
目录 题目 思路 代码 复杂度分析 题目 146. LRU缓存机制 思路 利用双链表和HashMap来解题 看到链表题目,我们可以使用头尾结点可以更好进行链表操作和边界判断等 还需要使用size变量来 ...
- 146. LRU 缓存机制 + 哈希表 + 自定义双向链表
146. LRU 缓存机制 LeetCode-146 题目描述 题解分析 java代码 package com.walegarrett.interview; /** * @Author WaleGar ...
- [Leetcode]146.LRU缓存机制
Leetcode难题,题目为: 运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制.它应该支持以下操作: 获取数据 get 和 写入数据 put . 获取数据 get(key ...
- 【力扣】146. LRU缓存机制
运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制.它应该支持以下操作: 获取数据 get 和 写入数据 put . 获取数据 get(key) - 如果关键字 (key) ...
- 146. LRU缓存机制
题目描述 运用你所掌握的数据结构,设计和实现一个LRU (最近最少使用) 缓存机制.它应该支持以下操作: 获取数据 get 和 写入数据 put . 获取数据 get(key) - 如果密钥 (key ...
- Leetcode 146. LRU 缓存机制
前言 缓存是一种提高数据读取性能的技术,在计算机中cpu和主内存之间读取数据存在差异,CPU和主内存之间有CPU缓存,而且在内存和硬盘有内存缓存.当主存容量远大于CPU缓存,或磁盘容量远大于主存时,哪 ...
- leetcode:146. LRU缓存机制
题目描述: 运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制.它应该支持以下操作: 获取数据 get 和 写入数据 put . 获取数据 get(key) - 如果密钥 ( ...
- LeetCode 146. LRU缓存机制(LRU Cache)
题目描述 运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制.它应该支持以下操作: 获取数据 get 和 写入数据 put . 获取数据 get(key) - 如果密钥 (k ...
随机推荐
- FFT&原根&NTT&MTT
FFT bilibili 3b1b视频讲解 核心过程: 原根 Definition 若 \(a\) 模 \(m\) 的阶等于 \(\varphi(m)\),则称 \(a\) 为模 \(m\) 的一个原 ...
- Pytorch——张量 Tensors
张量 Tensors 1.torch.is_tensor torch.is_tensor(obj) 用法:判断是否为张量,如果是 pytorch 张量,则返回 True. 参数:obj (Object ...
- webRTC中语音降噪模块ANS细节详解(二)
上篇(webRTC中语音降噪模块ANS细节详解(一))讲了维纳滤波的基本原理.本篇先给出webRTC中ANS的基本处理过程,然后讲其中两步(即时域转频域和频域转时域)中的一些处理细节. ANS的基本处 ...
- Java中的函数式编程(三)lambda表达式
写在前面 lambda表达式是一个匿名函数.在Java 8中,它和函数式接口一起,共同构建了函数式编程的框架. lambda表达式乍看像是匿名内部类的一种语法糖,但实际上,它们是两种本质不同的事物 ...
- 分库分表利器之Sharding Sphere(深度好文,看过的人都说好)
Sharding-Sphere Sharding-JDBC 最早是当当网内部使用的一款分库分表框架,到2017年的时候才开始对外开源,这几年在大量社区贡献者的不断迭代下,功能也逐渐完善,现已更名为 S ...
- 移动端 h5 uniapp 读,写,删本地文件或sd文件
移动端 h5 uniapp 读,写,删本地文件或sd文件 应用场景: 当我们需要做离线应用或者是加载本地文件时使用到此方法.(本篇文章给大家分享访问app私有文件目录,系统公共目录,sd外置存储的文件 ...
- Spring Security 多过滤链的使用
Spring Security 多过滤链的使用 一.背景 二.需求 1.给客户端使用的api 2.给网站使用的api 三.实现方案 方案一: 方案二 四.实现 1.app 端 Spring Secur ...
- 预备知识-python核心用法常用数据分析库(上)
1.预备知识-python核心用法常用数据分析库(上) 目录 1.预备知识-python核心用法常用数据分析库(上) 概述 实验环境 任务一:环境安装与配置 [实验目标] [实验步骤] 任务二:Pan ...
- 详解DNS域名解析系统(域名、域名服务器[根、顶级、授权/权限、本地]、域名解析过程[递归与迭代])
文章转自:https://blog.csdn.net/weixin_43914604/article/details/105583806 学习课程:<2019王道考研计算机网络> 学习目的 ...
- 21.10.18 test
可可大神出题,四款有趣的游戏推荐,第四个好玩/se T1 loopers \(\color{green}{100}\) 考虑钦定 \(a_1,a_i\) 的位置,固定左边一坨,那么剩下的一坨的 \(\ ...