题解

难得啊,本来能 \(AC\) 的一道题,注释没删,挂了五分,难受

此题暴力很好想,就是直接 \(n^2\) 枚举不同的矩阵组合,记录块内答案和跨块的答案

出题人不会告诉你,这题只要输出块内答案就可以拿到 \(65pts\) 。

一个很简单的优化就是按 \(x_1\) 的值先排个序,然后判断

if (mat[j].x1-mat[i].x2>1) break;

但是这种玄学优化仍可以被上下一条链似的块卡掉,但良心出题人竟然没卡。

正解应该是按两维的坐标均排个序,然后二分查找,求出符合要求的块,复杂度 \(\mathcal O(nlogn)\)

我不会告诉你其实常数小的暴力其实比正解还快了一倍

Code

\(AC\kern 0.4em CODE:\)

#include<bits/stdc++.h>
#define ri register int
#define p(i) ++i
using namespace std;
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf;
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++
inline int read() {
ri x=0,f=1;char ch=gc();
while(ch<'0'||ch>'9') {if (ch=='-') f=-1;ch=gc();}
while(ch>='0'&&ch<='9') {x=(x<<1)+(x<<3)+(ch^48);ch=gc();}
return x*f;
}
}
using IO::read;
namespace nanfeng{
#define int long long
#define cmax(x,y) ((x)>(y)?(x):(y))
#define cmin(x,y) ((x)>(y)?(y):(x))
#define FI FILE *IN
#define FO FILE *OUT
#undef bool
static const int N=1e5+7;
struct Matrix{
int x1,y1,x2,y2;
friend inline bool operator<(Matrix m1,Matrix m2) {return m1.x1<m2.x1;}
Matrix(){}
Matrix(int x1,int y1,int x2,int y2):x1(x1),y1(y1),x2(x2),y2(y2){}
}mat[N];
int n,ans;
inline int calc(Matrix m) {
int res=0;
int x=m.x2-m.x1,y=m.y2-m.y1;
if (x>y) swap(x,y);
res+=(x*x<<1);
res+=(y-x)*(x<<1);
return res;
}
inline int main() {
// FI=freopen("nanfeng.in","r",stdin);
// FO=freopen("nanfeng.out","w",stdout);
n=read();
for (ri i(1);i<=n;p(i)) {
int x1=read(),y1=read(),x2=read(),y2=read();
mat[i]=Matrix(x1,y1,x2,y2);
}
if (n==1) {printf("%lld\n",calc(mat[1]));return 0;}
sort(mat+1,mat+n+1);
// for (ri i(1);i<=n;p(i))
for (ri i(1);i<n;p(i)) {
ans+=calc(mat[i]);
// printf("%lld %lld %lld %lld\n",mat[i].x1,mat[i].y1,mat[i].x2,mat[i].y2);
for (ri j(i+1);j<=n;p(j)) {
if (mat[j].x1-mat[i].x2>1) break;
if (mat[j].x1-mat[i].x2==1) {
if (mat[j].y1-mat[i].y2>1||mat[i].y1-mat[j].y2>1) continue;
if (mat[j].y1-mat[i].y2==1||mat[i].y1-mat[j].y2==1) {ans+=1;continue;}
ans+=(cmin(mat[i].y2,mat[j].y2)-cmax(mat[i].y1,mat[j].y1))<<1;
if (cmax(mat[i].y2,mat[j].y2)>cmin(mat[i].y2,mat[j].y2)) ans+=1;
if (cmax(mat[i].y1,mat[j].y1)>cmin(mat[i].y1,mat[j].y1)) ans+=1;
} else if (mat[j].y1>mat[i].y2) {
if (mat[j].y1-mat[i].y2>1) continue;
ans+=(cmin(mat[i].x2,mat[j].x2)-mat[j].x1)<<1;
if (mat[i].x1<mat[j].x1) ans+=1;
if (cmax(mat[i].x2,mat[j].x2)>cmin(mat[i].x2,mat[j].x2)) ans+=1;
} else {
if (mat[i].y1-mat[j].y2>1) continue;
ans+=(cmin(mat[i].x2,mat[j].x2)-mat[j].x1)<<1;
if (mat[i].x1<mat[j].x1) ans+=1;
if (cmax(mat[i].x2,mat[j].x2)>cmin(mat[i].x2,mat[j].x2)) ans+=1;
}
// if (i==2) printf("%lld %lld %lld %lld ans=%lld\n",mat[j].x1,mat[j].y1,mat[j].x2,mat[j].y2,ans);
}
// printf("ans=%lld\n",ans);
}
// printf("%lld %lld %lld %lld\n",mat[n].x1,mat[n].y1,mat[n].x2,mat[n].y2);
printf("%lld\n",ans+calc(mat[n]));
return 0;
}
#undef int
}
int main() {return nanfeng::main();}

NOIP 模拟 6 辣鸡的更多相关文章

  1. noip模拟6[辣鸡·模板·大佬·宝藏]

    这怕不是学长出的题吧 这题就很迷 这第一题吧,正解竟然是O(n2)的,我这是快气死了,考场上一直觉得aaaaa n2过不了过不了, 我就去枚举边了,然后调了两个小时,愣是没调出来,然后交了个暴力,就走 ...

  2. [CSP-S模拟测试]:辣鸡(ljh) (暴力)

    题目描述 辣鸡$ljh\ NOI$之后就退役了,然后就滚去学文化课了.然而在上化学课的时候,数学和化学都不好的$ljh$却被一道简单题难住了,受到了大佬的嘲笑.题目描述是这样的:在一个二维平面上有一层 ...

  3. NOIP模拟测试10「大佬·辣鸡·模板」

    大佬 显然假期望 我奇思妙想出了一个式子$f[i]=f[i-1]+\sum\limits_{j=1}^{j<=m} C_{k \times j}^{k}\times w[j]$ 然后一想不对得容 ...

  4. 7.29 NOIP模拟测试10 辣鸡(ljh)+模板(ac)+大佬(kat)

    T1 辣鸡(ljh) 就是一道分类讨论的暴搜,外加一丢丢的减枝,然而我挂了,为啥呢,分类讨论变量名打错,大于小于号打反,能对才怪,写了sort为了调试就注释了,后来忘了解开,小减枝也没打.但是这道题做 ...

  5. 10.17 NOIP模拟赛

    目录 2018.10.17 NOIP模拟赛 A 咒语curse B 神光light(二分 DP) C 迷宫maze(次短路) 考试代码 B 2018.10.17 NOIP模拟赛 时间:1h15min( ...

  6. 10.16 NOIP模拟赛

    目录 2018.10.16 NOIP模拟赛 A 购物shop B 期望exp(DP 期望 按位计算) C 魔法迷宫maze(状压 暴力) 考试代码 C 2018.10.16 NOIP模拟赛 时间:2h ...

  7. 2019.7.29 NOIP模拟测试10 反思总结【T2补全】

    这次意外考得不错…但是并没有太多厉害的地方,因为我只是打满了暴力[还没去推T3] 第一题折腾了一个小时,看了看时间先去写第二题了.第二题尝试了半天还是只写了三十分的暴力,然后看到第三题是期望,本能排斥 ...

  8. noip模拟6(T2更新

    由于蒟弱目前还没调出T1和T2,所以先写T3和T4.(T1T2更完辣! update in 6.12 07:19 T3 大佬 题目描述: 他发现katarina大佬真是太强了,于是就学习了一下kata ...

  9. Solution Set - 神奇 NOIP 模拟赛

    \[\mathfrak{\text{Defining }\LaTeX\text{ macros...}}\newcommand{\vct}[1]{\boldsymbol{#1}}\newcommand ...

随机推荐

  1. mybatis 加载策略及注解开发

    1. 延迟策略 在需要用到数据时在加载相关数据,常用于一对多关系, 优点:先从单表查询,需要时再从关联表去关联查询,大大提高数据库性能, 缺点:当需要用到数据时,才会进行数据库查询,这样在大批量数据查 ...

  2. ECMAScript6.0

    ECMAScript6.0相当于JavaScript的标准,它规定了浏览器脚本语言的标准,发布于2015年,目标是使得 JavaScript 语言可以用来编写复杂的大型应用程序,成为企业级开发语言 N ...

  3. Min25 筛学习笔记

    仅仅是 \(min25\) 筛最基本的方法,没有任何推式子的例题.(想了想还是加两道吧qwq) 这里解决的是 \(Luogu\) 那道模板题. min25 基本方法: 最基础的是两个式子: \[G(n ...

  4. Requests 方法 -- post请求操作实践

    1.登录Jenkins抓包 ,小编的Jenkins部署在Tomcat上,把Jenkins.war 包放置到webapps目录. 本次用浏览器自带抓包,按下F12操作,主要看post就可以,登录是向服务 ...

  5. session及cookie详解(七)

    前言 文章说明 在每整理一个技术点的时候,都要清楚,为什么去记录它.是为了工作上项目的需要?还是为了搭建技术基石,为学习更高深的技术做铺垫? 让每一篇文章都不是泛泛而谈,复制粘贴,都有它对自己技术提升 ...

  6. Vue全局引入JS的方法

    两种情况: 1. js为ES5的写法时,如下(自定义的my.js): function fun(){ console.log('hello'); } Vue中的全局引入方式为,在index.html中 ...

  7. 利用C++11可变模板,封装调用dll导出函数

    起因 开发中经常需要动态调用一些导出函数,试着利用C++11特性封装一下 尝试 常规使用 typedef int WINAPI (*TMessageBoxA)(HWND hWnd,LPCSTR lpT ...

  8. 14Java进阶网络编程API

    1.网络协议的三要素:语义.语法和时序 语义表示要做什么,语法表示要怎么做,时序表示做的顺序. 2.网络OSI七层模型 OSI/RM 模型(Open System Interconnection/Re ...

  9. SQL修改列名,增加列,删除列语句的写法

    1.修改数据表名 ALTER TABLE [表名.]OLD_TABLE_NAME RENAME TO NEW_TABLE_NAME; 2.修改列名 ALTER TABLE [表名.]TABLE_NAM ...

  10. CSS 格式 设置标签间距 和 input slot

    作者:张艳涛 日期:2020-07-29 CSS设置俩个标签的间距 及 Input Slots <div> <div class="m-b-20 ovf-hd"& ...