Solution -「POJ 3710」Christmas Game
\(\mathcal{Decription}\)
Link.
定义一棵圣诞树:
是仙人掌。
不存在两个同一环上的点,度数均 \(\ge 3\)。
给出 \(n\) 棵互不相关的圣诞树,双人博弈,每轮切断一棵圣诞树的一条边,并且与该树根不向连的部分全部消失,不能操作者负。求先手是否有必胜策略。
多测,\(T,n\le 100\),\(m\le 500\)。
\(\mathcal{Solution}\)
没有什么不说人话的定理和结论,这里只应用 SG 函数和 Nim 游戏的基础知识。
本题解中,定义树上“长度”为两点间边的数量。
首先,考虑从根连出多条链的图,显然是 Nim 游戏,每堆石子就是链的长度,根的 SG 函数为这些长度的异或和。
接下来考虑任意一棵树,发现上述结论可以归纳地推广。根据定义,全局 SG 函数为各部分独立 SG 函数异或和,得到:
\]
注意这里 \(\operatorname{sg} (u)\) 实际上表示 \(u\) 子树的 SG 函数值。其中 \(+1\) 意为每堆石子(链)的长度都 \(+1\)。
回忆一下 SG 函数的定义:
\]
此后,考虑从 \((*)\) 式的角度求环的 SG 函数。环的后继状态为删除环上任意一条边得到两条链,而链是 Nim 游戏,SG 函数为链长异或和,可以解决。形式地,设环 \(C\) 的大小为 \(n\),有:
\]
分 \(n\) 的奇偶性讨论:
\(2|n \Rightarrow 2\not|(n-1)\),而 \(a+b=n-1\),所以 \(a,b\) 奇偶性不同,则它们二进制最低位不同。那么两数异或值不可能为 \(0\),即集合中不存在 \(0\),那么此时 \(\operatorname{sg} (C)=0\)。
\(2\not|n \Rightarrow 2|(n-1)\),而 \(a+b=n-1\),同理地,两数异或值必然为偶数,而且显然存在 \(0\)。得到 \(\operatorname{sg} (C)=1\)。
综上,\(\operatorname{sg} (C)=[2\not|n]\)。
回到本题,“圣诞树”的定义保证了环在缩点后的图中是叶子,所以对于环,用环的 SG 函数算,否则用树的 SG 函数算,最后求每棵圣诞树的 SG 异或就能判断先手胜负啦。
单棵树复杂度 \(\mathcal O(n)\)。
\(\mathcal{Code}\)
/* Clearink */
#include <cstdio>
const int MAXN = 100, MAXM = 500;
int n, m, ecnt, head[MAXN + 5], dep[MAXN + 5], sg[MAXN + 5];
bool vis[MAXN + 5];
struct Edge { int to, nxt; } graph[MAXM * 2 + 5];
inline void link ( const int s, const int t ) {
graph[++ ecnt] = { t, head[s] };
head[s] = ecnt;
}
inline int calcSG ( const int u, const int fe ) {
/*
返回值表示当前找到的环的顶点(唯一可能度数 >= 3 的点),若不在环上,返回 0。
*/
vis[u] = true;
for ( int i = head[u], v, cir; i; i = graph[i].nxt ) {
if ( ( i ^ 1 ) == fe || !( v = graph[i].to ) ) continue;
if ( vis[v] ) {
sg[v] ^= ( dep[u] - dep[v] + 1 ) & 1;
graph[i ^ 1].to = 0;
return v;
}
dep[v] = dep[u] + 1, cir = calcSG ( v, i );
if ( !cir ) sg[u] ^= sg[v] + 1;
else if ( cir ^ u ) return cir;
}
return 0;
}
inline void clear () {
ecnt = 1;
for ( int i = 1; i <= n; ++ i ) head[i] = sg[i] = dep[i] = vis[i] = 0;
}
int main () {
for ( int T; ~scanf ( "%d", &T ); ) {
int ans = 0;
while ( T -- ) {
clear ();
scanf ( "%d %d", &n, &m );
for ( int i = 1, u, v; i <= m; ++ i ) {
scanf ( "%d %d", &u, &v );
link ( u, v ), link ( v, u );
}
calcSG ( 1, 0 ), ans ^= sg[1];
}
puts ( ans ? "Sally" : "Harry" );
}
return 0;
}
Solution -「POJ 3710」Christmas Game的更多相关文章
- 「POJ 3666」Making the Grade 题解(两种做法)
0前言 感谢yxy童鞋的dp及暴力做法! 1 算法标签 优先队列.dp动态规划+滚动数组优化 2 题目难度 提高/提高+ CF rating:2300 3 题面 「POJ 3666」Making th ...
- Solution -「ARC 104E」Random LIS
\(\mathcal{Description}\) Link. 给定整数序列 \(\{a_n\}\),对于整数序列 \(\{b_n\}\),\(b_i\) 在 \([1,a_i]\) 中等概率 ...
- Solution -「ACM-ICPC BJ 2002」「POJ 1322」Chocolate
\(\mathcal{Description}\) Link. \(c\) 种口味的的巧克力,每种个数无限.每次取出一个,取 \(n\) 次,求恰有 \(m\) 个口味出现奇数次的概率. \( ...
- 「POJ Challenge」生日礼物
Tag 堆,贪心,链表 Solution 把连续的符号相同的数缩成一个数,去掉两端的非正数,得到一个正负交替的序列,把该序列中所有数的绝对值扔进堆中,用所有正数的和减去一个最小值,这个最小值的求法与「 ...
- Solution -「CTS 2019」「洛谷 P5404」氪金手游
\(\mathcal{Description}\) Link. 有 \(n\) 张卡牌,第 \(i\) 张的权值 \(w_i\in\{1,2,3\}\),且取值为 \(k\) 的概率正比于 \ ...
- Solution -「BZOJ 3812」主旋律
\(\mathcal{Description}\) Link. 给定含 \(n\) 个点 \(m\) 条边的简单有向图 \(G=(V,E)\),求 \(H=(V,E'\subseteq E)\ ...
- Solution -「CF 1342E」Placing Rooks
\(\mathcal{Description}\) Link. 在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...
- 「POJ 3268」Silver Cow Party
更好的阅读体验 Portal Portal1: POJ Portal2: Luogu Description One cow from each of N farms \((1 \le N \le 1 ...
- Solution -「简单 DP」zxy 讲课记实
魔法题位面级乱杀. 「JOISC 2020 Day4」治疗计划 因为是不太聪明的 Joker,我就从头开始理思路了.中途也会说一些和 DP 算法本身有关的杂谈,给自己的冗长题解找借口. 首先,治疗方案 ...
随机推荐
- [BJDCTF2020]EzPHP-POP链
那次某信内部比赛中有道pop链问题的题目,我当时没有做出来,所以在此总结一下,本次以buu上复现的[MRCTF2020]Ezpop为例. 题目 1 Welcome to index.php 2 < ...
- Spring Security源码解析一:UsernamePasswordAuthenticationFilter之登录流程
一.前言 spring security安全框架作为spring系列组件中的一个,被广泛的运用在各项目中,那么spring security在程序中的工作流程是个什么样的呢,它是如何进行一系列的鉴权和 ...
- spring拦截机制中Filter(过滤器)、interceptor(拦截器)和Aspect(切面)的使用及区别
Spring中的拦截机制,如果出现异常的话,异常的顺序是从里面到外面一步一步的进行处理,如果到了最外层都没有进行处理的话,就会由tomcat容器抛出异常. 1.过滤器:Filter :可以获得Http ...
- vue项目再HBuilder打包成app后,有ui模块未添加的弹窗
直接在打包后的mainifst.json的文件夹中加入标注部分,我是这样解决了的
- 34.AVL树
1.创建Node结点 class Node { int value; Node left; Node right; public Node(int value) { this.value = valu ...
- golang中的标准库数据格式
数据格式介绍 是系统中数据交互不可缺少的内容 这里主要介绍JSON.XML.MSGPack JSON json是完全独立于语言的文本格式,是k-v的形式 name:zs 应用场景:前后端交互,系统间数 ...
- golang中自定义实现0当做除数的错误异常处理接口
package main import "fmt" type ZeroDivisor struct { // 定义一个0当做除数的结构体 divisor int // 被除数 di ...
- CSS八种让人眼前一亮的HOVER效果
一.发送效果 HTML <div id="send-btn"> <button> // 这里是一个svg的占位 Send </button> & ...
- Druid未授权访问实战利用
Druid未授权访问实战利用 最近身边的同学都开始挖src了,而且身边接触到的挖src的网友也是越来越多.作者也是在前几天开始了挖src之路.惊喜又遗憾的是第一次挖src就挖到了一家互联网公司的R ...
- vue中清除路由缓存
beforeRouteLeave (to, from, next) { if (to.name === 'pageA') { /* pageA是需要跳转的路由 */ // console.log('返 ...