本文将同步发布于:

题目

题目链接:洛谷 P3428官网

题意简述

给定 \(n\) 个圆 \((x_i,y_i,r_i)\),每个圆对应一个点集 \(S_i=\left\{(x,y)\mid (x-x_i)^2+(y-y_i)^2\leq r_i^2\right\}\)。

求一个最小的 \(i\) 满足 \(\cap_{j=1}^i S_j=\varnothing\);如果无解输出 NIE

题解

简单又自然的随机化

我们考虑枚举 \(i\),然后判定 \(S_{1\sim i}\) 的交集是否为空。

如何判定呢?我们想到一个简单的方法,我们随机一些在圆的边界上的点,只需要判定这些点是否存至少在一个点在所有圆内即可。

这种方法简单又自然,但是随机化算法正确率不高,这远远不够。

研究几何性质

如果做计算几何题而抛弃几何性质,所得到的做法往往是劣解。

继续沿着上面的思路,我们同样考虑枚举 \(i\),然后判定 \(S_{1\sim i}\) 的交集是否为空。

不同的是,我们定义一个交集中横坐标最大的点为代表点(代表点只会有一个,这是因为圆是凸集,凸集的交集还是凸集)。

我们发现,如果一些圆的交集非空,那么其代表点一定满足:它是所有圆两两交集的代表中横坐标最小的那个。

证明十分显然,考虑交集的意义即可。

最后的结论

综上所述,对于一个 \(i\),我们只需要求出 \(1\sim i-1\) 与 \(i\) 的代表点即可,如果所有代表点中横坐标最小的那一个在所有的圆内,那么其合法,否则不合法,换言之,答案为 \(i\)。

我们考虑证明这个结论:

  • 若没有交集,则这个点必然不合法,符合我们的预期;
  • 若有交集,则我们需要证明这个点是交集的代表点。
    • 假设其不是交集的代表点,则交集的代表点可能在其左右;
    • 左边:不可能,若交集存在,则代表点的横坐标 \(\geq\) 当前点横坐标。
    • 右边:不可能,考虑当前点在 \(S_a\cap S_b\) 中得到,那么所有 \(x\geq\) 当前点横坐标的点均被交集抛弃,因此代表点的横坐标 \(\leq\) 当前点横坐标。
    • 由夹逼过程可知结论正确。

这个算法的时间复杂度为 \(\Theta(n^2)\)。

参考程序

下面我们来解决两圆求交的问题。

下面介绍一下两种方法:余弦定理和相似三角形。

余弦定理

用余弦定理求解需要用到三角函数,常数大,精度差。

我们考虑下图:

对 \(\triangle{ACB}\) 运用余弦定理,得到 \(r_a^2+d^2-2dr_a\cos\alpha=r_b^2\),进而求出 \(\alpha=\arccos\left(\frac{r_a^2+d^2-r_b2}{2dr_a}\right)\)。

然后我们再求出基准角 \(\beta\),显然 \(\beta=\texttt{atan2}(y_b-y_a,x_b-x_a)\)。

因此,我们得到了 \(C,D\) 两点的对 \(A\) 的极角为 \(\beta+\alpha\),\(\beta-\alpha\)。

对于极角为 \(\theta\),极径为 \(r_a\) 的点,我们得出其对应点的坐标为 \((r_a\cos\theta,r_a\sin\theta)\)。

#include<bits/stdc++.h>
using namespace std;
#define reg register
typedef long long ll; const double eps=1e-6; inline int sgn(reg double x){
if(fabs(x)<eps)
return 0;
else
return x<0?-1:1;
} inline double sqr(reg double x){
return x*x;
} const int MAXN=2e3+5; struct Vector{
double x,y;
inline Vector(reg double x=0,reg double y=0):x(x),y(y){
return;
}
inline Vector operator+(const Vector& a)const{
return Vector(x+a.x,y+a.y);
}
inline Vector operator-(const Vector& a)const{
return Vector(x-a.x,y-a.y);
}
inline Vector operator*(const double a)const{
return Vector(x*a,y*a);
}
}; inline double dot(const Vector& a,const Vector& b){
return a.x*b.x+a.y*b.y;
} inline double cross(const Vector& a,const Vector& b){
return a.x*b.y-a.y*b.x;
} typedef Vector Point; inline double getDis2(const Point& a,const Point& b){
return dot(a-b,a-b);
} inline double getDis(const Point& a,const Point& b){
return sqrt(getDis2(a,b));
} inline bool isEmpty(const Point& a){
return a.x!=a.x||a.y!=a.y;
} struct Circle{
Point o;
double r;
inline bool contain(const Point& x)const{
return sgn(sqr(r)-getDis2(x,o))>=0;
}
inline Point getRig(void)const{
return o+Vector(r,0);
}
}; inline bool isCon(const Circle& a,const Circle& b){
return sgn(sqr(a.r-b.r)-getDis2(a.o,b.o))>=0;
} inline bool isSep(const Circle& a,const Circle& b){
return sgn(getDis2(a.o,b.o)-sqr(a.r+b.r))>0;
} inline Point getPot(const Circle &a,const Circle &b){
if(isCon(a,b))
if(sgn(b.getRig().x-a.getRig().x)>0)
return a.getRig();
else
return b.getRig();
else if(isSep(a,b))
return Point(nan(""),nan(""));
else{
if(a.contain(b.getRig()))
return b.getRig();
else if(b.contain(a.getRig()))
return a.getRig();
else{
reg double d=getDis(a.o,b.o);
reg double ang=acos(((sqr(a.r)+sqr(d))-sqr(b.r))/(2*a.r*d));
reg double delta=atan2(b.o.y-a.o.y,b.o.x-a.o.x);
reg double ang1=delta+ang,ang2=delta-ang;
Point p1=a.o+Vector(cos(ang1)*a.r,sin(ang1)*a.r);
Point p2=a.o+Vector(cos(ang2)*a.r,sin(ang2)*a.r);
Point res;
if(sgn(p2.x-p1.x)>0)
res=p2;
else
res=p1;
return res;
}
}
} int n;
Circle a[MAXN]; int main(void){
scanf("%d",&n);
Point lef(0,0);
for(reg int i=1;i<=n;++i){
static int x,y,r;
scanf("%d%d%d",&x,&y,&r);
a[i].o=Point(x,y),a[i].r=r;
if(i==2)
lef=getPot(a[1],a[2]);
else if(i>2){
for(reg int j=1;j<i&&!isEmpty(lef);++j){
Point tmp=getPot(a[i],a[j]);
if(isEmpty(tmp)||tmp.x<=lef.x)
lef=tmp;
}
for(reg int j=1;j<=i&&!isEmpty(lef);++j)
if(!a[j].contain(lef))
lef=Point(nan(""),nan(""));
}
if(isEmpty(lef)){
printf("%d\n",i);
return 0;
}
}
puts("NIE");
return 0;
}

相似三角形

如上图,我们设 \(a=|AG|\),\(b=|BG|\),\(h=|CG|\)。

那么我们有:

\[\begin{cases}r_a^2=a^2+h^2\\r_b^2=b^2+h^2\\a+b=d\end{cases}
\]

那么我们有:

\[a=\frac{r_a^2+d^2-r_b^2}{2d}
\]

然后考虑 \(\triangle AIB\sim\triangle CHG\),我们有:

\[(y_b-y_a)h=d(y_c-y_g)
\]

我们可由此解出坐标,其他同理可算出。

#include<bits/stdc++.h>
using namespace std;
#define reg register
typedef long long ll; const double eps=1e-6; inline int sgn(reg double x){
if(fabs(x)<eps)
return 0;
else
return x<0?-1:1;
} inline double sqr(reg double x){
return x*x;
} const int MAXN=2e3+5; struct Vector{
double x,y;
inline Vector(reg double x=0,reg double y=0):x(x),y(y){
return;
}
inline Vector operator+(const Vector& a)const{
return Vector(x+a.x,y+a.y);
}
inline Vector operator-(const Vector& a)const{
return Vector(x-a.x,y-a.y);
}
inline Vector operator*(const double a)const{
return Vector(x*a,y*a);
}
}; inline double dot(const Vector& a,const Vector& b){
return a.x*b.x+a.y*b.y;
} inline double cross(const Vector& a,const Vector& b){
return a.x*b.y-a.y*b.x;
} typedef Vector Point; inline double getDis2(const Point& a,const Point& b){
return dot(a-b,a-b);
} inline double getDis(const Point& a,const Point& b){
return sqrt(getDis2(a,b));
} inline bool isEmpty(const Point& a){
return isnan(a.x)||isnan(a.y);
} struct Circle{
Point o;
double r;
inline bool contain(const Point& x)const{
return sgn(sqr(r)-getDis2(x,o))>=0;
}
inline Point getRig(void)const{
return o+Vector(r,0);
}
}; inline bool isCon(const Circle& a,const Circle& b){
return sgn(sqr(a.r-b.r)-getDis2(a.o,b.o))>=0;
} inline bool isSep(const Circle& a,const Circle& b){
return sgn(getDis2(a.o,b.o)-sqr(a.r+b.r))>0;
} inline Point getPot(const Circle &a,const Circle &b){
if(isCon(a,b))
if(sgn(b.getRig().x-a.getRig().x)>0)
return a.getRig();
else
return b.getRig();
else if(isSep(a,b))
return Point(nan(""),nan(""));
else{
if(a.contain(b.getRig()))
return b.getRig();
else if(b.contain(a.getRig()))
return a.getRig();
else{
reg double d=getDis(a.o,b.o);
reg double val=(sqr(a.r)+sqr(d)-sqr(b.r))/(2*d);
reg double h=sqrt(sqr(a.r)-sqr(val));
Point bas=a.o+(b.o-a.o)*(val/d);
Vector tmp=Vector(b.o.y-a.o.y,a.o.x-b.o.x)*(h/d);
Point p1=bas-tmp,p2=bas+tmp;
if(sgn(p2.x-p1.x)>0)
return p2;
else
return p1;
}
}
} int n;
Circle a[MAXN]; int main(void){
scanf("%d",&n);
Point lef(0,0);
for(reg int i=1;i<=n;++i){
static int x,y,r;
scanf("%d%d%d",&x,&y,&r);
a[i].o=Point(x,y),a[i].r=r;
if(i==2)
lef=getPot(a[1],a[2]);
else if(i>2){
for(reg int j=1;j<i&&!isEmpty(lef);++j){
Point tmp=getPot(a[i],a[j]);
if(isEmpty(tmp)||tmp.x<=lef.x)
lef=tmp;
}
for(reg int j=1;j<=i&&!isEmpty(lef);++j)
if(!a[j].contain(lef))
lef=Point(nan(""),nan(""));
}
if(isEmpty(lef)){
printf("%d\n",i);
return 0;
}
}
puts("NIE");
return 0;
}

「题解」POI2005 AKC-Special Forces Manoeuvres的更多相关文章

  1. 「题解」「HNOI2013」切糕

    文章目录 「题解」「HNOI2013」切糕 题目描述 思路分析及代码 题目分析 题解及代码 「题解」「HNOI2013」切糕 题目描述 点这里 思路分析及代码 题目分析 这道题的题目可以说得上是史上最 ...

  2. 「题解」「美团 CodeM 资格赛」跳格子

    目录 「题解」「美团 CodeM 资格赛」跳格子 题目描述 考场思路 思路分析及正解代码 「题解」「美团 CodeM 资格赛」跳格子 今天真的考自闭了... \(T1\) 花了 \(2h\) 都没有搞 ...

  3. 「题解」JOIOI 王国

    「题解」JOIOI 王国 题目描述 考场思考 正解 题目描述 点这里 考场思考 因为时间不太够了,直接一上来就着手暴力.但是本人太菜,居然暴力爆 000 ,然后当场自闭- 一气之下,发现对 60pts ...

  4. 「题解」:[loj2763][JOI2013]现代豪宅

    问题 A: 现代豪宅 时间限制: 1 Sec  内存限制: 256 MB 题面 题目描述 (题目译自 $JOI 2013 Final T3$「現代的な屋敷」) 你在某个很大的豪宅里迷路了.这个豪宅由东 ...

  5. 「题解」:$Six$

    问题 A: Six 时间限制: 1 Sec  内存限制: 512 MB 题面 题面谢绝公开. 题解 来写一篇正经的题解. 每一个数对于答案的贡献与数本身无关,只与它包含了哪几个质因数有关. 所以考虑二 ...

  6. 「题解」:$Smooth$

    问题 A: Smooth 时间限制: 1 Sec  内存限制: 512 MB 题面 题面谢绝公开. 题解 维护一个队列,开15个指针,对应前15个素数. 对于每一次添加数字,暴扫15个指针,将指针对应 ...

  7. 「题解」:Kill

    问题 A: Kill 时间限制: 1 Sec  内存限制: 256 MB 题面 题面谢绝公开. 题解 80%算法 赛时并没有想到正解,而是选择了另一种正确性较对的贪心验证. 对于每一个怪,我们定义它的 ...

  8. 「题解」:y

    问题 B: y 时间限制: 1 Sec  内存限制: 256 MB 题面 题面谢绝公开. 题解 考虑双向搜索. 定义$cal_{i,j,k}$表示当前已经搜索状态中是否存在长度为i,终点为j,搜索过边 ...

  9. 「题解」:x

    问题 A: x 时间限制: 1 Sec  内存限制: 256 MB 题面 题面谢绝公开. 题解 赛时想到了正解并且对拍了很久.对拍没挂,但是评测姬表示我w0了……一脸懵逼. 不难证明,如果对于两个数字 ...

随机推荐

  1. 简述MySQL优化

    数据库的优化可以从四个方面来优化: 1.结构层: web服务器采用负载均衡服务器,mysql服务器采用主从复制,读写分离 2.储存层: 采用合适的存储引擎,采用三范式 3.设计层: 采用分区分表,索引 ...

  2. 【Azure 环境】基于Azure搭建企业级内部站点, 配置私有域名访问的详细教程 (含演示动画)

    前言 在Azure中,可以通过App Service快速部署,构建自定义站点(PaaS服务).默认情况下,这些站点被访问URL都是面向公网,通过公网进行解析.为了最好的安全保障,是否可以有一种功能实现 ...

  3. SQL中那么多函数,Java8为什么还要提供重复的Stream方法,多此一举?

    有个同学提出一个这样的疑问; 在业务系统中,数据一般都从sql中查询,类似使用where,order by,limit,聚合函数等,为什么还要用java8的Stream方法? 对这个问题,大家有什么见 ...

  4. 深入源码,深度解析Java 线程池的实现原理

    java 系统的运行归根到底是程序的运行,程序的运行归根到底是代码的执行,代码的执行归根到底是虚拟机的执行,虚拟机的执行其实就是操作系统的线程在执行,并且会占用一定的系统资源,如CPU.内存.磁盘.网 ...

  5. Docker Swarm(十)Portainer 集群可视化管理

    前言 搭建好我们的容器编排集群,那我们总不能日常的时候也在命令行进行操作,所以我们需要使用到一些可视化的工具,Docker图形化管理提供了很多工具,有Portainer.Docker UI.Shipy ...

  6. 1.5 RPM红帽软件包1.6 Yum软件仓库

    1.5 RPM红帽软件包 在RPM(红帽软件包管理器)公布之前,要想在Linux系统中安装软件只能采取源码包的方式安装.早期在Linux系统中安装程序是一件非常困难.耗费耐心的事情,而且大多数的服务程 ...

  7. 云计算OpenStack---虚拟机获取不到ip(12)

    一.现象描述 openstack平台中创建虚拟机后,虚拟机在web页面中显示获取到了ip,但是打开虚拟机控制台后查看网络状态,虚拟机没有ip地址,下图为故障截图: 二.分析 1.查看neutron服务 ...

  8. python基础之错误、调试(异常处理)

    在程序运行过程中,总会遇到各种各样的错误. 有的错误是程序编写有问题造成的,比如本来应该输出整数结果输出了字符串,这种错误我们通常称之为bug,bug是必须修复的. 有的错误是用户输入造成的,比如让用 ...

  9. python 中 list 的append与extend区别

    append 添加的是一个对象 extend 添加的是序列与原序列合并

  10. https 真的安全吗,可以抓包吗,如何防止抓包吗

    Android_interview github 地址 大家好,我是程序员徐公,加上实习,有五年中大厂经验.自荐一下,可以关注我的微信公众号程序员徐公 公众号程序员徐公回复黑马,获取 Android ...