C# Monitor.Wait() 源码追踪 (转载)
source:
释放对象上的锁并阻止当前线程,直到它重新获取该锁。 如果已用指定的超时时间间隔,则线程进入就绪队列。 可以在等待之前退出同步上下文的同步域,随后重新获取该域。
[SecuritySafeCritical]
public static bool Wait(object obj, int millisecondsTimeout, bool exitContext)
{
if (obj == null)
{
throw new ArgumentNullException("obj");
}
return ObjWait(exitContext, millisecondsTimeout, obj);
}
[MethodImpl(MethodImplOptions.InternalCall), SecurityCritical]
private static extern bool ObjWait(bool exitContext, int millisecondsTimeout, object obj);
clr/src/vm/ecall.cpp
FCFuncStart(gMonitorFuncs)
FCFuncElement("Enter", JIT_MonEnter)
FCFuncElement("Exit", JIT_MonExit)
FCFuncElement("TryEnterTimeout", JIT_MonTryEnter)
FCFuncElement("ObjWait", ObjectNative::WaitTimeout)
FCFuncElement("ObjPulse", ObjectNative::Pulse)
FCFuncElement("ObjPulseAll", ObjectNative::PulseAll)
FCFuncElement("ReliableEnter", JIT_MonReliableEnter)
FCFuncEnd()
映射到ObjectNative的方法
clr/src/vm/comobject.cpp -- cpp存储实现
FCIMPL3(FC_BOOL_RET, ObjectNative::WaitTimeout, CLR_BOOL exitContext, INT32 Timeout, Object* pThisUNSAFE)
{
CONTRACTL
{
MODE_COOPERATIVE;
DISABLED(GC_TRIGGERS); // can't use this in an FCALL because we're in forbid gc mode until we setup a H_M_F.
SO_TOLERANT;
THROWS;
}
CONTRACTL_END;
BOOL retVal = FALSE;
OBJECTREF pThis = (OBJECTREF) pThisUNSAFE;
HELPER_METHOD_FRAME_BEGIN_RET_1(pThis);
//-[autocvtpro]-------------------------------------------------------
if (pThis == NULL)
COMPlusThrow(kNullReferenceException, L"NullReference_This");
if ((Timeout < 0) && (Timeout != INFINITE_TIMEOUT))
COMPlusThrowArgumentOutOfRange(L"millisecondsTimeout", L"ArgumentOutOfRange_NeedNonNegNum");
retVal = pThis->Wait(Timeout, exitContext);
//-[autocvtepi]-------------------------------------------------------
HELPER_METHOD_FRAME_END();
FC_RETURN_BOOL(retVal);
}
FCIMPLEND
现在我们看到函数体中最终调用的是pThis->Wait,pThis是个啥玩意呢,通过分析代码,发现它就是WaitTimeOut函数的最后一个参数Object* pThisUNSAFE的一个引用,原来是一个Object类型,那这里的Object和c#的object或者.Net的Object有啥关系,大胆猜想,这其实就是托管Object对应的native Object。而事实也应如此。
那麽废话不多说,我们要来看看此Object的Wait实现,依然避免不了搜索一番,首先我们在object.h中找到了Object类的定义,摘取其说明如下,也印证了刚才的猜想:
/*
* Object
*
* This is the underlying base on which objects are built. The MethodTable
* 这是构建对象的基础。的方法表
* 每个对象都要维护自己的方法表
*
* pointer and the sync block index live here. The sync block index is actually
* 指针和同步块索引在这里。同步块索引实际上是
* at a negative offset to the instance. See syncblk.h for details.
* *在实例的负偏移量处。详见syncbl .h。
*
*/
查看wait方法:
BOOL Wait(INT32 timeOut, BOOL exitContext)
{
WRAPPER_CONTRACT;
return GetHeader()->Wait(timeOut, exitContext);
}
哦,原来是先调用了GetHeader方法获取对象头,然后调用对象头的Wait方法,追下去,GetHeader方法的实现:
// Sync Block & Synchronization services
// Access the ObjHeader which is at a negative offset on the object (because of
// cache lines)
ObjHeader *GetHeader()
{
LEAF_CONTRACT;
return PTR_ObjHeader(PTR_HOST_TO_TADDR(this) - sizeof(ObjHeader));
}
看来要想往下追,还必须看对象头ObjHeader类的Wait方法实现:在syncblk.h中找到了其定义,在对应的cpp文件中找到了其相应的实现如下:
BOOL ObjHeader::Wait(INT32 timeOut, BOOL exitContext)
{
CONTRACTL
{
INSTANCE_CHECK;
THROWS;
GC_TRIGGERS;
MODE_ANY;
INJECT_FAULT(COMPlusThrowOM(););
}
CONTRACTL_END;
// The following code may cause GC, so we must fetch the sync block from
// the object now in case it moves.
SyncBlock *pSB = GetBaseObject()->GetSyncBlock();
// GetSyncBlock throws on failure
_ASSERTE(pSB != NULL);
// make sure we own the crst
if (!pSB->DoesCurrentThreadOwnMonitor())
COMPlusThrow(kSynchronizationLockException);
#ifdef _DEBUG
Thread *pThread = GetThread();
DWORD curLockCount = pThread->m_dwLockCount;
#endif
BOOL result = pSB->Wait(timeOut,exitContext);
_ASSERTE (curLockCount == pThread->m_dwLockCount);
return result;
}
看到了嘛!!!!该Wait实现最重要的两行代码终于浮现出来了,它们就是加横线的两行。
第一行 SyncBlock *pSB = GetBaseObject()->GetSyncBlock(); 用来获取对象的索引块;
第二行 BOOL result = pSB->Wait(timeOut,exitContext); 嗯,越来越接近真相,原来又调用了索引块对象的Wait方法。
那继续吧,看看SyncBlock 类型的Wait方法实现,依旧在syncblk.cpp中,如下:
// We maintain two queues for SyncBlock::Wait.
// 1. Inside SyncBlock we queue all threads that are waiting on the SyncBlock.
// When we pulse, we pick the thread from this queue using FIFO.
// 2. We queue all SyncBlocks that a thread is waiting for in Thread::m_WaitEventLink.
// When we pulse a thread, we find the event from this queue to set, and we also
// or in a 1 bit in the syncblock value saved in the queue, so that we can return
// immediately from SyncBlock::Wait if the syncblock has been pulsed.
BOOL SyncBlock::Wait(INT32 timeOut, BOOL exitContext)
{
CONTRACTL
{
INSTANCE_CHECK;
THROWS;
GC_TRIGGERS;
MODE_ANY;
INJECT_FAULT(COMPlusThrowOM());
}
CONTRACTL_END;
Thread *pCurThread = GetThread();
BOOL isTimedOut = FALSE;
BOOL isEnqueued = FALSE;
WaitEventLink waitEventLink;
WaitEventLink *pWaitEventLink;
// As soon as we flip the switch, we are in a race with the GC, which could clean
// up the SyncBlock underneath us -- unless we report the object.
_ASSERTE(pCurThread->PreemptiveGCDisabled());
// Does this thread already wait for this SyncBlock?
WaitEventLink *walk = pCurThread->WaitEventLinkForSyncBlock(this);
if (walk->m_Next) {
if (walk->m_Next->m_WaitSB == this) {
// Wait on the same lock again.
walk->m_Next->m_RefCount ++;
pWaitEventLink = walk->m_Next;
}
else if ((SyncBlock*)(((DWORD_PTR)walk->m_Next->m_WaitSB) & ~1)== this) {
// This thread has been pulsed. No need to wait.
return TRUE;
}
}
else {
// First time this thread is going to wait for this SyncBlock.
CLREvent* hEvent;
if (pCurThread->m_WaitEventLink.m_Next == NULL) {
hEvent = &(pCurThread->m_EventWait);
}
else {
hEvent = GetEventFromEventStore();
}
waitEventLink.m_WaitSB = this;
waitEventLink.m_EventWait = hEvent;
waitEventLink.m_Thread = pCurThread;
waitEventLink.m_Next = NULL;
waitEventLink.m_LinkSB.m_pNext = NULL;
waitEventLink.m_RefCount = 1;
pWaitEventLink = &waitEventLink;
walk->m_Next = pWaitEventLink;
// Before we enqueue it (and, thus, before it can be dequeued), reset the event
// that will awaken us.
hEvent->Reset();
// This thread is now waiting on this sync block
ThreadQueue::EnqueueThread(pWaitEventLink, this);
isEnqueued = TRUE;
}
_ASSERTE ((SyncBlock*)((DWORD_PTR)walk->m_Next->m_WaitSB & ~1)== this);
PendingSync syncState(walk);
OBJECTREF obj = m_Monitor.GetOwningObject();
m_Monitor.IncrementTransientPrecious();
GCPROTECT_BEGIN(obj);
{
GCX_PREEMP();
// remember how many times we synchronized
syncState.m_EnterCount = LeaveMonitorCompletely();
_ASSERTE(syncState.m_EnterCount > 0);
Context* targetContext = pCurThread->GetContext();
_ASSERTE(targetContext);
Context* defaultContext = pCurThread->GetDomain()->GetDefaultContext();
_ASSERTE(defaultContext);
if (exitContext &&
targetContext != defaultContext)
{
Context::MonitorWaitArgs waitArgs = {timeOut, &syncState, &isTimedOut};
Context::CallBackInfo callBackInfo = {Context::MonitorWait_callback, (void*) &waitArgs};
Context::RequestCallBack(CURRENT_APPDOMAIN_ID, defaultContext, &callBackInfo);
}
else
{
isTimedOut = pCurThread->Block(timeOut, &syncState);
}
}
GCPROTECT_END();
m_Monitor.DecrementTransientPrecious();
return !isTimedOut;
}
拜托,当你看到函数又臭又长的时候..尤其时还不熟悉的时候,一定要看函数的描述,该函数开头之前的函数说明解释了两件事情:
1.在SyncBlock 内部维护了一个等待所有这个SyncBlock 的线程队列,当调用pulse的时候(如Monitor.Pulse)会从该队列取出下一个线程,方式是先进先出。
2.使用另外一个队列维护所有有线程正在waiting的SyncBlock ,队列类型为WaitEventLink(也即是Thread::m_WaitEventLink的类型),一旦有pulse调用,会从该队列取出一个Event并set.
现在再来看函数代码部分,重点看横线的代码行:
WaitEventLink *walk = pCurThread->WaitEventLinkForSyncBlock(this);
先检查当前线程是否已经在等待对象的同步索引块,本示例中显然是第一次,然后通过
hEvent = &(pCurThread->m_EventWait);或者
hEvent = GetEventFromEventStore();获取一个等待事件对象
之后会走 ThreadQueue::EnqueueThread(pWaitEventLink, this);
从而把当前线程加入到等待队列,这时候我的脑海中又想起来MSDN上对Monitor.Wait的描述:
当线程调用 Wait 时,它释放对象的锁并进入对象的等待队列。 对象的就绪队列中的下一个线程(如果有)获取锁并拥有对对象的独占使用。
这下大概能对上号了吧。
在函数最后,还是调用了isTimedOut = pCurThread->Block(timeOut, &syncState);以实现实现当前线程的等待(或曰阻塞)。
所以依旧要看看这个Block方法的实现:
// Called out of SyncBlock::Wait() to block this thread until the Notify occurs.
BOOL Thread::Block(INT32 timeOut, PendingSync *syncState)
{
WRAPPER_CONTRACT;
_ASSERTE(this == GetThread());
// Before calling Block, the SyncBlock queued us onto it's list of waiting threads.
// However, before calling Block the SyncBlock temporarily left the synchronized
// region. This allowed threads to enter the region and call Notify, in which
// case we may have been signalled before we entered the Wait. So we aren't in the
// m_WaitSB list any longer. Not a problem: the following Wait will return
// immediately. But it means we cannot enforce the following assertion:
// _ASSERTE(m_WaitSB != NULL);
return (Wait(syncState->m_WaitEventLink->m_Next->m_EventWait, timeOut, syncState) != WAIT_OBJECT_0);
}
Block又调用了Thread的Wait方法:
// Return whether or not a timeout occured. TRUE=>we waited successfully
DWORD Thread::Wait(CLREvent *pEvent, INT32 timeOut, PendingSync *syncInfo)
{
WRAPPER_CONTRACT;
DWORD dwResult;
DWORD dwTimeOut32;
_ASSERTE(timeOut >= 0 || timeOut == INFINITE_TIMEOUT);
dwTimeOut32 = (timeOut == INFINITE_TIMEOUT
? INFINITE
: (DWORD) timeOut);
dwResult = pEvent->Wait(dwTimeOut32, TRUE /*alertable*/, syncInfo);
// Either we succeeded in the wait, or we timed out
_ASSERTE((dwResult == WAIT_OBJECT_0) ||
(dwResult == WAIT_TIMEOUT));
return dwResult;
}
Wait又调用了pEvent的Wait方法,注意这里的pEvent是CLREvent类型,而该参数的值则是之前在SyncBlock::Wait获取的等待事件对象。这里我们可以大胆猜测CLREvent对应的其实是一个内核事件对象。
CLREvent的Wait实现如下,有点长,看关键的横线代码行:
DWORD CLREvent::Wait(DWORD dwMilliseconds, BOOL alertable, PendingSync *syncState)
{
WRAPPER_CONTRACT;
return WaitEx(dwMilliseconds, alertable?WaitMode_Alertable:WaitMode_None,syncState);
}
紧接着WaitEx的实现如下:
DWORD CLREvent::WaitEx(DWORD dwMilliseconds, WaitMode mode, PendingSync *syncState)
{
BOOL alertable = (mode & WaitMode_Alertable)!=0;
CONTRACTL
{
if (alertable)
{
THROWS; // Thread::DoAppropriateWait can throw
}
else
{
NOTHROW;
}
if (GetThread())
{
if (alertable)
GC_TRIGGERS;
else
GC_NOTRIGGER;
}
else
{
DISABLED(GC_TRIGGERS);
}
SO_TOLERANT;
PRECONDITION(m_handle != INVALID_HANDLE_VALUE); // Handle has to be valid
}
CONTRACTL_END;
_ASSERTE(Thread::AllowCallout());
Thread *pThread = GetThread();
#ifdef _DEBUG
// If a CLREvent is OS event only, we can not wait for the event on a managed thread
if (IsOSEvent())
_ASSERTE (!pThread);
#endif
_ASSERTE (pThread || !g_fEEStarted || dbgOnly_IsSpecialEEThread());
if (IsOSEvent() || !CLRSyncHosted()) {
if (pThread && alertable) {
DWORD dwRet = WAIT_FAILED;
BEGIN_SO_INTOLERANT_CODE_NOTHROW (pThread, return WAIT_FAILED;);
dwRet = pThread->DoAppropriateWait(1, &m_handle, FALSE, dwMilliseconds,
mode,
syncState);
END_SO_INTOLERANT_CODE;
return dwRet;
}
else {
_ASSERTE (syncState == NULL);
return CLREventWaitHelper(m_handle,dwMilliseconds,alertable);
}
}
else {
if (pThread && alertable) {
DWORD dwRet = WAIT_FAILED;
BEGIN_SO_INTOLERANT_CODE_NOTHROW (pThread, return WAIT_FAILED;);
dwRet = pThread->DoAppropriateWait(IsAutoEvent()?HostAutoEventWait:HostManualEventWait,
m_handle,dwMilliseconds,
mode,
syncState);
END_SO_INTOLERANT_CODE;
return dwRet;
}
else {
_ASSERTE (syncState == NULL);
DWORD option = 0;
if (alertable) {
option |= WAIT_ALERTABLE;
}
if (IsAutoEvent()) {
return HostAutoEventWait((IHostAutoEvent*)m_handle,dwMilliseconds, option);
}
else {
return HostManualEventWait((IHostManualEvent*)m_handle,dwMilliseconds, option);
}
}
}
}
这里又调用了Thread的DoAppropriateWait;
DoAppropriateWait的实现如下:
DWORD Thread::DoAppropriateWait(int countHandles, HANDLE *handles, BOOL waitAll,
DWORD millis, WaitMode mode, PendingSync *syncState)
{
STATIC_CONTRACT_THROWS;
STATIC_CONTRACT_GC_TRIGGERS;
INDEBUG(BOOL alertable = (mode & WaitMode_Alertable) != 0;);
_ASSERTE(alertable || syncState == 0);
DWORD dwRet = (DWORD) -1;
EE_TRY_FOR_FINALLY {
dwRet =DoAppropriateWaitWorker(countHandles, handles, waitAll, millis, mode);
}
EE_FINALLY {
if (syncState) {
if (!GOT_EXCEPTION() &&
dwRet >= WAIT_OBJECT_0 && dwRet < (DWORD)(WAIT_OBJECT_0 + countHandles)) {
// This thread has been removed from syncblk waiting list by the signalling thread
syncState->Restore(FALSE);
}
else
syncState->Restore(TRUE);
}
_ASSERTE (dwRet != WAIT_IO_COMPLETION);
}
EE_END_FINALLY;
return(dwRet);
}
then,DoAppropriateWaitWorker的实现如下,有点长,只看最关键那一句:
DWORD Thread::DoAppropriateWaitWorker(int countHandles, HANDLE *handles, BOOL waitAll,
DWORD millis, WaitMode mode)
{
CONTRACTL {
THROWS;
GC_TRIGGERS;
}
CONTRACTL_END;
DWORD ret = 0;
BOOL alertable = (mode & WaitMode_Alertable)!= 0;
BOOL ignoreSyncCtx = (mode & WaitMode_IgnoreSyncCtx)!= 0;
// Unless the ignoreSyncCtx flag is set, first check to see if there is a synchronization
// context on the current thread and if there is, dispatch to it to do the wait.
// If the wait is non alertable we cannot forward the call to the sync context
// since fundamental parts of the system (such as the GC) rely on non alertable
// waits not running any managed code. Also if we are past the point in shutdown were we
// are allowed to run managed code then we can't forward the call to the sync context.
if (!ignoreSyncCtx && alertable && CanRunManagedCode(FALSE))
{
GCX_COOP();
BOOL fSyncCtxPresent = FALSE;
OBJECTREF SyncCtxObj = NULL;
GCPROTECT_BEGIN(SyncCtxObj)
{
GetSynchronizationContext(&SyncCtxObj);
if (SyncCtxObj != NULL)
{
SYNCHRONIZATIONCONTEXTREF syncRef = (SYNCHRONIZATIONCONTEXTREF)SyncCtxObj;
if (syncRef->IsWaitNotificationRequired())
{
fSyncCtxPresent = TRUE;
ret = DoSyncContextWait(&SyncCtxObj, countHandles, handles, waitAll, millis);
}
}
}
GCPROTECT_END();
if (fSyncCtxPresent)
return ret;
}
GCX_PREEMP();
if(alertable)
{
DoAppropriateWaitWorkerAlertableHelper(mode);
}
LeaveRuntimeHolder holder((size_t)WaitForMultipleObjectsEx);
StateHolder<MarkOSAlertableWait,UnMarkOSAlertableWait> OSAlertableWait(alertable);
ThreadStateHolder tsh(alertable, TS_Interruptible | TS_Interrupted);
ULONGLONG dwStart = 0, dwEnd;
retry:
if (millis != INFINITE)
{
dwStart = CLRGetTickCount64();
}
ret = DoAppropriateAptStateWait(countHandles, handles, waitAll, millis, mode);
if (ret == WAIT_IO_COMPLETION)
{
_ASSERTE (alertable);
if (m_State & TS_Interrupted)
{
HandleThreadInterrupt(mode & WaitMode_ADUnload);
}
// We could be woken by some spurious APC or an EE APC queued to
// interrupt us. In the latter case the TS_Interrupted bit will be set
// in the thread state bits. Otherwise we just go back to sleep again.
if (millis != INFINITE)
{
dwEnd = CLRGetTickCount64();
if (dwEnd >= dwStart + millis)
{
ret = WAIT_TIMEOUT;
goto WaitCompleted;
}
else
{
millis -= (DWORD)(dwEnd - dwStart);
}
}
goto retry;
}
_ASSERTE((ret >= WAIT_OBJECT_0 && ret < (WAIT_OBJECT_0 + (DWORD)countHandles)) ||
(ret >= WAIT_ABANDONED && ret < (WAIT_ABANDONED + (DWORD)countHandles)) ||
(ret == WAIT_TIMEOUT) || (ret == WAIT_FAILED));
// countHandles is used as an unsigned -- it should never be negative.
_ASSERTE(countHandles >= 0);
if (ret == WAIT_FAILED)
{
DWORD errorCode = ::GetLastError();
if (errorCode == ERROR_INVALID_PARAMETER)
{
if (CheckForDuplicateHandles(countHandles, handles))
COMPlusThrow(kDuplicateWaitObjectException);
else
COMPlusThrowHR(HRESULT_FROM_WIN32(errorCode));
}
else if (errorCode == ERROR_ACCESS_DENIED)
{
// A Win32 ACL could prevent us from waiting on the handle.
COMPlusThrow(kUnauthorizedAccessException);
}
_ASSERTE(errorCode == ERROR_INVALID_HANDLE);
if (countHandles == 1)
ret = WAIT_OBJECT_0;
else if (waitAll)
{
// Probe all handles with a timeout of zero. When we find one that's
// invalid, move it out of the list and retry the wait.
#ifdef _DEBUG
BOOL fFoundInvalid = FALSE;
#endif
for (int i = 0; i < countHandles; i++)
{
// WaitForSingleObject won't pump memssage; we already probe enough space
// before calling this function and we don't want to fail here, so we don't
// do a transition to tolerant code here
DWORD subRet = WaitForSingleObject (handles[i], 0);
if (subRet != WAIT_FAILED)
continue;
_ASSERTE(::GetLastError() == ERROR_INVALID_HANDLE);
if ((countHandles - i - 1) > 0)
memmove(&handles[i], &handles[i+1], (countHandles - i - 1) * sizeof(HANDLE));
countHandles--;
#ifdef _DEBUG
fFoundInvalid = TRUE;
#endif
break;
}
_ASSERTE(fFoundInvalid);
// Compute the new timeout value by assume that the timeout
// is not large enough for more than one wrap
dwEnd = CLRGetTickCount64();
if (millis != INFINITE)
{
if (dwEnd >= dwStart + millis)
{
ret = WAIT_TIMEOUT;
goto WaitCompleted;
}
else
{
millis -= (DWORD)(dwEnd - dwStart);
}
}
goto retry;
}
else
{
// Probe all handles with a timeout as zero, succeed with the first
// handle that doesn't timeout.
ret = WAIT_OBJECT_0;
int i;
for (i = 0; i < countHandles; i++)
{
TryAgain:
// WaitForSingleObject won't pump memssage; we already probe enough space
// before calling this function and we don't want to fail here, so we don't
// do a transition to tolerant code here
DWORD subRet = WaitForSingleObject (handles[i], 0);
if ((subRet == WAIT_OBJECT_0) || (subRet == WAIT_FAILED))
break;
if (subRet == WAIT_ABANDONED)
{
ret = (ret - WAIT_OBJECT_0) + WAIT_ABANDONED;
break;
}
// If we get alerted it just masks the real state of the current
// handle, so retry the wait.
if (subRet == WAIT_IO_COMPLETION)
goto TryAgain;
_ASSERTE(subRet == WAIT_TIMEOUT);
ret++;
}
_ASSERTE(i != countHandles);
}
}
WaitCompleted:
_ASSERTE((ret != WAIT_TIMEOUT) || (millis != INFINITE));
return ret;
}
then, 还要看 DoAppropriateAptStateWait(countHandles, handles, waitAll, millis, mode)的实现:
DWORD Thread::DoAppropriateAptStateWait(int numWaiters, HANDLE* pHandles, BOOL bWaitAll,
DWORD timeout, WaitMode mode)
{
CONTRACTL {
THROWS;
GC_TRIGGERS;
}
CONTRACTL_END;
BOOL alertable = (mode&WaitMode_Alertable)!=0;
return WaitForMultipleObjectsEx_SO_TOLERANT(numWaiters, pHandles,bWaitAll, timeout,alertable);
}
then,再看WaitForMultipleObjectsEx_SO_TOLERANT的实现:
DWORD WaitForMultipleObjectsEx_SO_TOLERANT (DWORD nCount, HANDLE *lpHandles, BOOL bWaitAll,DWORD dwMilliseconds, BOOL bAlertable)
{
DWORD dwRet = WAIT_FAILED;
DWORD lastError = 0;
BEGIN_SO_TOLERANT_CODE (GetThread ());
dwRet = ::WaitForMultipleObjectsEx (nCount, lpHandles, bWaitAll, dwMilliseconds, bAlertable);
lastError = ::GetLastError();
END_SO_TOLERANT_CODE;
// END_SO_TOLERANT_CODE overwrites lasterror. Let's reset it.
::SetLastError(lastError);
return dwRet;
}
到这里,万水千山,我们终于搞清楚Monitor.Wait的大概实现原理(事实上我们只捋了一遍本文示例中Monitor.Enter的调用stack),内部最终还是调用了WaitForMultipleObjectsEx,不过要注意CLREvent::WaitEx的实现有好几个分支,根据情况的不同,最后调的并不一定是WaitForMultipleObjectsEx,也有可能是CLREventWaitHelper->WaitForSingleObjectEx等等。
转载
再来加深一下印象,每一个Object实例都维护一个SyncBlock并通过这个玩意来进行线程的同步,所以Monitor.Wait最终走到这个BOOL SyncBlock::Wait(INT32 timeOut, BOOL exitContext)并不足奇。在SyncBlock内部我们维护了一个所有正在等待此同步索引块的线程的队列,那具体是通过什麽来控制的呢,通过阅读SyncBlock::Wait源码,我们知道SyncBlock内部的这个维护链表就是SLink m_Link;
// We thread two different lists through this link. When the SyncBlock is
// active, we create a list of waiting threads here. When the SyncBlock is
// released (we recycle them), the SyncBlockCache maintains a free list of
// SyncBlocks here.
//
// We can't afford to use an SList<> here because we only want to burn
// space for the minimum, which is the pointer within an SLink.
SLink m_Link;
在SyncBlock::Wait中通过调用ThreadQueue::EnqueueThread把当前线程的WaitEventLink加入到SyncBlock的m_Link之中:
// Enqueue is the slow one. We have to find the end of the Q since we don't
// want to burn storage for this in the SyncBlock.
/* static */
inline void ThreadQueue::EnqueueThread(WaitEventLink *pWaitEventLink, SyncBlock *psb)
{
LEAF_CONTRACT;
COUNTER_ONLY(GetPrivatePerfCounters().m_LocksAndThreads.cQueueLength++);
_ASSERTE (pWaitEventLink->m_LinkSB.m_pNext == NULL);
SyncBlockCache::LockHolder lh(SyncBlockCache::GetSyncBlockCache());
SLink *pPrior = &psb->m_Link;
while (pPrior->m_pNext)
{
// We shouldn't already be in the waiting list!
_ASSERTE(pPrior->m_pNext != &pWaitEventLink->m_LinkSB);
pPrior = pPrior->m_pNext;
}
pPrior->m_pNext = &pWaitEventLink->m_LinkSB;
}
通过分析Thread的结构,我们知道Thread的两个私有字段:
// For Object::Wait, Notify and NotifyAll, we use an Event inside the
// thread and we queue the threads onto the SyncBlock of the object they
// are waiting for.
CLREvent m_EventWait;
WaitEventLink m_WaitEventLink;
WaitEventLink是一个struct用来管理线程等待的事件,而CLREvent m_EventWait显然就是当前用来阻塞线程或者线程用来等待的事件对象:
// Used inside Thread class to chain all events that a thread is waiting for by Object::Wait
struct WaitEventLink {
SyncBlock *m_WaitSB;
CLREvent *m_EventWait;
Thread *m_Thread; // Owner of this WaitEventLink.
WaitEventLink *m_Next; // Chain to the next waited SyncBlock.
SLink m_LinkSB; // Chain to the next thread waiting on the same SyncBlock.
DWORD m_RefCount; // How many times Object::Wait is called on the same SyncBlock.
};
再返回到BOOL SyncBlock::Wait(INT32 timeOut, BOOL exitContext)
我们看到刚开始就需要检查是否已经有线程在等待本SyncBlock,方法就是:
// Does this thread already wait for this SyncBlock?
WaitEventLink *walk = pCurThread->WaitEventLinkForSyncBlock(this);
若果已经有了,引用数加1:
// Wait on the same lock again.
walk->m_Next->m_RefCount ++;
如没有,则属于第一次,需要先创建一个事件对象CLREvent,创建过程:
// First time this thread is going to wait for this SyncBlock.
CLREvent* hEvent;
if (pCurThread->m_WaitEventLink.m_Next == NULL) {
hEvent = &(pCurThread->m_EventWait);
}
else {
hEvent = GetEventFromEventStore();
}
而这个事件对最后真正用来WaitForMultipleObjects的那个句柄至关重要。为什麽这麽说,我们继续看SyncBlock::Wait最后调用了pCurThread->Block(timeOut, &syncState);
// Called out of SyncBlock::Wait() to block this thread until the Notify occurs.
BOOL Thread::Block(INT32 timeOut, PendingSync *syncState)
{
WRAPPER_CONTRACT;
_ASSERTE(this == GetThread());
// Before calling Block, the SyncBlock queued us onto it's list of waiting threads.
// However, before calling Block the SyncBlock temporarily left the synchronized
// region. This allowed threads to enter the region and call Notify, in which
// case we may have been signalled before we entered the Wait. So we aren't in the
// m_WaitSB list any longer. Not a problem: the following Wait will return
// immediately. But it means we cannot enforce the following assertion:
// _ASSERTE(m_WaitSB != NULL);
return (Wait(syncState->m_WaitEventLink->m_Next->m_EventWait, timeOut, syncState) != WAIT_OBJECT_0);
}
这时候又紧接着调用了Wait(syncState->m_WaitEventLink->m_Next->m_EventWait, timeOut, syncState),第一个参数明显就是刚才的CLREvent,
// Return whether or not a timeout occured. TRUE=>we waited successfully
DWORD Thread::Wait(CLREvent *pEvent, INT32 timeOut, PendingSync *syncInfo)
{
WRAPPER_CONTRACT;
DWORD dwResult;
DWORD dwTimeOut32;
_ASSERTE(timeOut >= 0 || timeOut == INFINITE_TIMEOUT);
dwTimeOut32 = (timeOut == INFINITE_TIMEOUT
? INFINITE
: (DWORD) timeOut);
dwResult = pEvent->Wait(dwTimeOut32, TRUE /*alertable*/, syncInfo);
// Either we succeeded in the wait, or we timed out
_ASSERTE((dwResult == WAIT_OBJECT_0) ||
(dwResult == WAIT_TIMEOUT));
return dwResult;
}
而最后真正的Wait还是发生在CLREvent内部,看看它的Wait:
DWORD CLREvent::Wait(DWORD dwMilliseconds, BOOL alertable, PendingSync *syncState)
{
WRAPPER_CONTRACT;
return WaitEx(dwMilliseconds, alertable?WaitMode_Alertable:WaitMode_None,syncState);
}
再往下看就和之前的重复了,但是这里我们要着重的地方是CLREvent的私有字段
HANDLE m_handle;
其实你会发现这才是最后调用WaitForMupltipleObjectEx函数需要的那个句柄对象,而它就封装在CLREvent之中,这里的Handle就代表一个内核事件对象,
那麽那麽!这里的WaitForMupltipleObjectEx在什麽情况下返回呢?对的,需要事件对象的Set之后才能返回,ok,现在再让我们回忆一下Monitor.Wait在什麽
时候返回,没错,就是需要在其它的线程中调用Monitor.Pulse之后才能返回,这个Pulse名字起得很形象。由此,我们自然能推断出Pulse最后其实只不过是Event.Set,现在让我们看看Pulse:
void SyncBlock::Pulse()
{
CONTRACTL
{
INSTANCE_CHECK;
NOTHROW;
GC_NOTRIGGER;
MODE_ANY;
}
CONTRACTL_END;
WaitEventLink *pWaitEventLink;
if ((pWaitEventLink = ThreadQueue::DequeueThread(this)) != NULL)
pWaitEventLink->m_EventWait->Set();
}
看到这段代码,我们再对照Monitor.Pulse的描述:从队列中取到排在最前面的线程,这里其实等价于取到那个线程的Event事件对象并Set之,由此一来,正在WaitForMupltipeObjects这个事件的线程将获得释放,对于有多个线程等待同一个Event的情况,究竟是哪个线程会被释放,还应该取决于线程的优先级等属性,但是anyway,这样的调度过程已经交给操作系统定夺了。
同理PulseAll:
void SyncBlock::PulseAll()
{
CONTRACTL
{
INSTANCE_CHECK;
NOTHROW;
GC_NOTRIGGER;
MODE_ANY;
}
CONTRACTL_END;
WaitEventLink *pWaitEventLink;
while ((pWaitEventLink = ThreadQueue::DequeueThread(this)) != NULL)
pWaitEventLink->m_EventWait->Set();
}
转载
现在我们再回到最初的示例上来,ThreadProc1和ThreadProc2之间通过lock关键字进行同步,加在在这两个线程上的lock就好比两扇大门,而这两扇门同时只允许打开一扇。我们先在第一个线程中打开了第一扇门,那第二个线程就要在第二扇门外徘徊。而要打开第二扇门就应该等待第一扇门的Monitor.Exit,Exit的调用就好比是关上当前的门,通知另外的门可以打开了。
但是现在似乎出了点”意外“。
但是现在第一扇门打开之后,突然蹦出个Monitor.Wait,这玩意是个人物,它除了让第一个线程处于阻塞状态,还通知第二扇门可以打开了。这也就是说:并不需要等到第一扇门调用Monitor.Exit,第二扇门就可以打开了。
这一切究竟是怎麽发生的?带着种种疑惑,我们慢慢来拨开云雾见青天。
还需要从BOOL SyncBlock::Wait(INT32 timeOut, BOOL exitContext)开头,
该函数在真正的Block当前线程也即是调用isTimedOut = pCurThread->Block(timeOut, &syncState)之前,有一行代码值得研究一番:
syncState.m_EnterCount = LeaveMonitorCompletely();
单看这行代码所调用的函数名称,直译成:彻底离开Monitor,听起来和Monitor.Exit有点异曲同工之妙。
再来看看其实现:
LONG LeaveMonitorCompletely()
{
WRAPPER_CONTRACT;
return m_Monitor.LeaveCompletely();
}
嗯,又调用了
m_Monitor.LeaveCompletely();
这个m_Monitor在SyncBlock类中的定义:
protected:
AwareLock m_Monitor; // the actual monitor
注释说这是实际的Monitor,所以我们应该能猜出这就是Monitor.Enter/Exit所涉及的类(事实上也是如此,因为我很快看到了Monitor.Enter对应的实现就是AwareLock.Enter),是一个AwareLock 的变量。
Ok,我们再来看AwareLock 的LeaveCompletely实现:
LONG AwareLock::LeaveCompletely()
{
WRAPPER_CONTRACT;
LONG count = 0;
while (Leave()) {
count++;
}
_ASSERTE(count > 0); // otherwise we were never in the lock
return count;
}
再看Leave:
BOOL AwareLock::Leave()
{
CONTRACTL
{
INSTANCE_CHECK;
NOTHROW;
GC_NOTRIGGER;
MODE_ANY;
}
CONTRACTL_END;
Thread* pThread = GetThread();
AwareLock::LeaveHelperAction action = LeaveHelper(pThread);
switch(action)
{
case AwareLock::LeaveHelperAction_None:
// We are done
return TRUE;
case AwareLock::LeaveHelperAction_Signal:
// Signal the event
Signal();
return TRUE;
default:
// Must be an error otherwise
_ASSERTE(action == AwareLock::LeaveHelperAction_Error);
return FALSE;
}
}
由此可以看出所谓彻底离开不过就是遍历+Signal();那麽这个Signal函数究竟做了啥,看名字和注释知其一二:Signal the event
void Signal()
{
WRAPPER_CONTRACT;
// CLREvent::SetMonitorEvent works even if the event has not been intialized yet
m_SemEvent.SetMonitorEvent();
}
现在问题又来了,m_SemEvent是啥?首先,定义:
CLREvent m_SemEvent;
是个CLREvent,然后看看其初始化,是在void AwareLock::AllocLockSemEvent()中:
m_SemEvent.CreateMonitorEvent((SIZE_T)this);
啊哈,只看名字就知道这一个Monitor专用的Event,那麽AllocLockSemEvent又被谁调用呢,是BOOL AwareLock::EnterEpilog(Thread* pCurThread, INT32 timeOut),而EnterEpilog又为AwareLock::Enter所调用,事实上当EnterEpilog就是第二扇门的徘回函数。我们来看看怎麽徘徊的:
for (;;)
{
// We might be interrupted during the wait (Thread.Interrupt), so we need an
// exception handler round the call.
EE_TRY_FOR_FINALLY
{
// Measure the time we wait so that, in the case where we wake up
// and fail to acquire the mutex, we can adjust remaining timeout
// accordingly.
start = CLRGetTickCount64();
ret = m_SemEvent.Wait(timeOut, TRUE);
_ASSERTE((ret == WAIT_OBJECT_0) || (ret == WAIT_TIMEOUT));
if (timeOut != (INT32) INFINITE)
{
end = CLRGetTickCount64();
if (end == start)
{
duration = 1;
}
else
{
duration = end - start;
}
duration = min(duration, (DWORD)timeOut);
timeOut -= (INT32)duration;
}
}
要注意关键行
ret = m_SemEvent.Wait(timeOut, TRUE); 下文还会讲到。这明显是在等待事件对象的信号有状态。
再来看看SetMonitorEvent的实现:
void CLREvent::SetMonitorEvent()
{
CONTRACTL
{
NOTHROW;
GC_NOTRIGGER;
}
CONTRACTL_END;
// SetMonitorEvent is robust against initialization races. It is possible to
// call CLREvent::SetMonitorEvent on event that has not been initialialized yet by CreateMonitorEvent.
// CreateMonitorEvent will signal the event once it is created if it happens.
for (;;)
{
LONG oldFlags = m_dwFlags;
if (oldFlags & CLREVENT_FLAGS_MONITOREVENT_ALLOCATED)
{
// Event has been allocated already. Use the regular codepath.
Set();
break;
}
LONG newFlags = oldFlags | CLREVENT_FLAGS_MONITOREVENT_SIGNALLED;
if (FastInterlockCompareExchange((LONG*)&m_dwFlags, newFlags, oldFlags) != oldFlags)
{
// We lost the race
continue;
}
break;
}
}
又调用了Set函数:
BOOL CLREvent::Set()
{
CONTRACTL
{
NOTHROW;
GC_NOTRIGGER;
PRECONDITION((m_handle != INVALID_HANDLE_VALUE));
}
CONTRACTL_END;
_ASSERTE(Thread::AllowCallout());
if (IsOSEvent() || !CLRSyncHosted()) {
return UnsafeSetEvent(m_handle);
}
else {
if (IsAutoEvent()) {
HRESULT hr;
BEGIN_SO_TOLERANT_CODE_CALLING_HOST(GetThread());
hr = ((IHostAutoEvent*)m_handle)->Set();
END_SO_TOLERANT_CODE_CALLING_HOST;
return hr == S_OK;
}
else {
HRESULT hr;
BEGIN_SO_TOLERANT_CODE_CALLING_HOST(GetThread());
hr = ((IHostManualEvent*)m_handle)->Set();
END_SO_TOLERANT_CODE_CALLING_HOST;
return hr == S_OK;
}
}
}
在Set函数中我们看到最终是对m_handle的Set。从而使得事件状态被置成有信号状态,也即释放了所有的lock而使得它们重新处于被调度状态。
现在再回过头来看看AwareLock::EnterEpilog的逻辑,已经知道是通过ret = m_SemEvent.Wait(timeOut, TRUE)等待事件对象的信号状态,而我麽也已经知道在调用Monitor.Wait之后会调用事件对象的Set函数从而使得等待的线程得到锁。那麽为了加深印象,我还想通过Windbg走走。
LINK
https://github.com/SSCLI/sscli20_20060311
https://www.cnblogs.com/dancewithautomation/archive/2012/03/25/2416260.html
C# Monitor.Wait() 源码追踪 (转载)的更多相关文章
- 源码追踪,解决Could not locate executable null\bin\winutils.exe in the Hadoop binaries.问题
在windows系统本地运行spark的wordcount程序,会出现一个异常,但不影响现有程序运行. >>提君博客原创 http://www.cnblogs.com/tijun/ & ...
- Saiku登录源码追踪.(十三)
Saiku登录源码追踪呀~ >>首先我们需要debug跟踪saiku登录执行的源码信息 saiku源码的debug方式上一篇博客已有说明,这里简单介绍一下 在saiku启动脚本中添加如下命 ...
- Spring Boot 注解之ObjectProvider源码追踪
最近依旧在学习阅读Spring Boot的源代码,在此过程中涉及到很多在日常项目中比较少见的功能特性,对此深入研究一下,也挺有意思,这也是阅读源码的魅力之一.这里写成文章,分享给大家. 自动配置中的O ...
- C# Monitor.TryEnter 源码跟踪
source: Monitor 获取指定对象的独占锁. [MethodImpl(MethodImplOptions.InternalCall), SecuritySafeCritical, __Dyn ...
- underscore源码解析 (转载)
转载出自http://www.cnblogs.com/human/p/3273616.html (function() { // 创建一个全局对象, 在浏览器中表示为window对象, 在Node.j ...
- corefx 源码追踪:找到引起 SqlDataReader.ReadAsync 执行延迟的那行代码
最近遇到一个非常诡异的问题,在一个 ASP.NET Core 2.2 项目中,从 SQL Server 数据库查询 100 条数据记录,会出现 16-22s 左右的延迟.延迟出现在执行 SqlData ...
- Struts2源码解析-----转载
前面一节描述的Struts2很多东西,这节是对源码进行分析描述,通过这一节应该对struts2有了清楚认识! 还是把Struts2这个框图贴出来: 第一步:HttpServletRequest进入到S ...
- EasyUI学习总结(三)——easyloader源码分析(转载)
声明:这一篇文章是转载过来的,转载地址忘记了,原作者如果看到了,希望能够告知一声,我好加上去! easyloader模块是用来加载jquery easyui的js和css文件的,而且它可以分析模块的依 ...
- RyuBook1.0案例二:Traffic Monitor项目源码分析
Traffic Monitor源码分析 从simple_switch_13.SimpleSwitch13控制器继承并开发 class SimpleMonitor13(simple_switch_13. ...
随机推荐
- C语言:警告提示及解决方法
#include <stdio.h> int main(){ struct{ char *name; //姓名 int num; //学号 int age; //年龄 char group ...
- ADB打开快手APP
aa="adb -s {0} shell am start -n com.kuaishou.nebula/com.yxcorp.gifshow.HomeActivity".form ...
- BZOJ2457 双端队列 题解
本题直接求解十分困难,因为在不知道整个序列的数字规律时当前所作决策都无法保证最优性. 考虑正难则反,题目转化为将一个非降序列分成尽量少的几段,让每段对应原问题的双端队列. 先将原数组排序,由于原数组下 ...
- SpringBoot读取Resource下文件的几种方式(十五)
需求:提供接口下载resources目录下的模板文件,(或者读取resources下的文件)给后续批量导入数据提供模板文件. 方式一:ClassPathResource //获取模板文件:注意此处需要 ...
- Python入门 -- 001
在Windows系统下安装python: 从Python的官方网站(http://www.python.org/)下载最新版的程序安装包. 安装完成后设置路径,使得在Windows系统的CMD中能够通 ...
- Webstorm 快速补全
el-row>el-col*3>[:span='7'] 按Tab <el-row> <el-col> <div :span="">& ...
- Mybatis学习笔记-ResultMap结果集映射
解决属性名与字段名不一致的问题 新建项目 --> 测试实体类字段不一致的情况 数据库字段:id,name,pwd 实体类属性:id,name,password 输出结果 User{id=1, n ...
- 正则表达式-固定XML格式提取内容
(?<=(<(?<a>([A-Za-z]*?))>)).*?(?=(</\k<a>>))
- Excel VBA活动抽奖小程序
在活动中,我们常会有抽奖,抽奖箱准备繁琐,现在多采用线上抽奖方式,下面用Excel VBA写了一个简单的抽奖小程序 简单测试效果如下,可实现: 多次抽奖,且每次抽奖都不重复 抽奖界面滚动人员信息,点击 ...
- 实现 pow 函数
1 ////实现pow函数 2 3 #include <stdio.h> 4 #include <stdlib.h> 5 double power(double,int) ; ...