Surprise

Surprise是scikit系列中的一个。Surprise的User Guide有详细的解释和说明

支持多种推荐算法

基础算法/baseline algorithms

基于近邻方法(协同过滤)/neighborhood methods

矩阵分解方法/matrix factorization-based (SVD, PMF, SVD++, NMF)

下面介绍几种算法

基础算法:

  1. random_pred.NormalPredictor

  说明:Algorithm predicting a random rating based on the distribution of the training set, which is assumed to be normal.

  意思是:算法基于训练集的分布预测随机等级,假设该分布为正态分布

  2. baseline_only.BaselineOnly

  说明:Algorithm predicting the baseline estimate for given user and item.

  意思是:算法预测给定用户和项目的基线估计

协同过滤算法:

  3. knns.KNNBasic

  说明:A basic collaborative filtering algorithm.

  意思是:一种基本的协同过滤算法

  4. knns.KNNWithMeans

  说明:A basic collaborative filtering algorithm, taking into account the mean ratings of each user.

  意思是:一个基本的协同过滤算法,考虑到每个用户的平均评分

  5. knns.KNNBaseline

  说明:A basic collaborative filtering algorithm taking into account a baseline rating.

  意思是:一种基本的协同过滤算法考虑到基准评分

矩阵分解方法:

  6. matrix_factorization.SVD

  说明:The famous SVD algorithm, as popularized by Simon Funk during the Netflix Prize.

  意思是:著名的SVD算法

  7. matrix_factorization.SVDpp

  说明:The SVD++ algorithm, an extension of SVD taking into account implicit ratings.

  意思是:SVD++算法,SVD的一个扩展,考虑到隐式评级

  8. matrix_factorization.NMF

  说明:A collaborative filtering algorithm based on Non-negative Matrix Factorization.

  意思是:一种基于非负矩阵的协同过滤算法

  9. slope_one.SlopeOne

  说明:A simple yet accurate collaborative filtering algorithm.

  意思是:一种简单而准确的协同过滤算法

  10. co_clustering.CoClustering

  说明:A collaborative filtering algorithm based on co-clustering.

  意思是:一种基于共聚类的系统过滤算法

其中基于近邻的方法(协同过滤)可以设定不同的度量准则

相似度度量标准

  1. cosine

  说明:Compute the cosine similarity between all pairs of users (or items).

  意思是:计算所有用户对(或物品)之间的相似度

  2. msd

  说明:Compute the Mean Squared Difference similarity between all pairs of users (or items).

  意思是:计算所有用户对(或物品)之间的平均平方差相似度

  3. pearson

  说明:Compute the Pearson correlation coefficient between all pairs of users (or items).

  意思是:计算所有用户对(或物品)之间的皮尔逊相关系数

  4. pearson_baseline

  说明:Compute the (shrunk) Pearson correlation coefficient between all pairs of users (or items) using baselines for centering instead of means.

  意思是:计算所有用户对(或物品)之间的皮尔逊相关系数(收缩),使用基线进行居中,而不是使用平均值

支持不同的评估准则

评估准则

  1. rmse    最小均方根误差

  2. mae     平均绝对误差

  3. fcp        协调对的分数

参考文章:https://blog.csdn.net/mycafe_/article/details/79146764

Python推荐系统库--Surprise理论的更多相关文章

  1. Python推荐系统库Surprise

    Surprise(Simple Python Recommendation System Engine)是一款推荐系统库,是scikit系列中的一个.简单易用,同时支持多种推荐算法.基础算法.协同过滤 ...

  2. Python推荐系统库--Surprise实战

    一.使用movieLens数据集 from surprise import KNNBasic, SVD from surprise import Dataset from surprise impor ...

  3. python推荐系统库

    Python推荐系统库——Surprise 在Python中实现你自己的推荐系统 python-recsys:一款实现推荐系统的python库

  4. python推荐淘宝物美价廉商品

    完成的目标: 输入搜索的商品 以及 淘宝的已评价数目.店铺的商品描述(包括如实描述.服务态度.快递的5.0打分): 按要求,晒选出要求数量的结果,并按"物美价廉算法"排序后输出 思 ...

  5. python推荐淘宝物美价廉商品 2.0

    改动: 新增功能 :可选择只看天猫或淘宝 代码模块化封装,参数配置或输入单独在一个py文件管理,主函数功能只留出参数传入在setting配置的py文件里. main.py代码: # -*- codin ...

  6. Python推荐算法学习1

    1.闵可夫斯基距离 闵可夫斯基距离可以概括曼哈顿距离与欧几里得距离.  其中r越大,单个维度差值大小会对整体产生更大的影响.这个很好理解,假设当r=2时一个正方形对角线长度,永远是r=3时正方体对角线 ...

  7. python推荐书籍

    推荐的python电子书 python学习路线图 优先级 入门:python核心编程 提高:python cookbook 其他 (1).数据分析师 需要有深厚的数理统计基础,但是对程序开发能力不做要 ...

  8. python 推荐算法

    每个人都会有这样的经历:当你在电商网站购物时,你会看到天猫给你弹出的“和你买了同样物品的人还买了XXX”的信息:当你在SNS社交网站闲逛时,也会看到弹出的“你可能认识XXX“的信息:你在微博添加关注人 ...

  9. python并发编程-进程理论-进程方法-守护进程-互斥锁-01

    操作系统发展史(主要的几个阶段) 初始系统 1946年第一台计算机诞生,采用手工操作的方式(用穿孔卡片操作) 同一个房间同一时刻只能运行一个程序,效率极低(操作一两个小时,CPU一两秒可能就运算完了) ...

随机推荐

  1. dubbo学习笔记1

    DUBBO入门 官方文档:https://dubbo.gitbooks.io/dubbo-user-book/content/preface/ 服务提供者 项目结构: pom文件: <?xml ...

  2. Python3-操作系统发展史

    操作系统发展史 手工操作 —— 穿孔卡片 批处理 —— 磁带存储 多道程序系统 操作系统的作用 手工操作 —— 穿孔卡片 1946年第一台计算机诞生--20世纪50年代中期,计算机工作还在采用手工操作 ...

  3. FAT32文件格式示例解析

    1.前言 本文主要以一个示例来分析FAT32文件系统的格式,对FAT32文件系统的各个区域详细分析. 2.FAT32文件系统典型分区 3.FAT32文件系统示例 按如下步骤在ubuntu下创建FAT3 ...

  4. 即速应用_微信小程序开发 http://www.jisuapp.cn/

    即速应用_微信小程序开发   http://www.jisuapp.cn/

  5. JavaScript中的this -- 好像很有道理版

    函数调用 首先需要从函数的调用开始讲起. JS(ES5)里面有三种函数调用形式: func(p1, p2) obj.child.method(p1, p2) func.call(context, p1 ...

  6. $Django 前后端之 跨域问题(同源策略) vue项目(axios跨域请求数据)

    1 跨域问题(多个域之间的数据访问) #同源策略(ip port 协议全部相同) #本站的只能请求本站域名的数据 #CORS实现(跨域资源共享) #实现CORS通信的关键是服务器.只要服务器实现了CO ...

  7. (并发编程)RLock(与死锁现象),Semaphore,Even事件,线程Queue

    一.死锁现象与递归锁所谓死锁: 是指两个或两个以上的进程或线程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去.此时称系统处于死锁状态或系统产生了死锁,这些永远在 ...

  8. Thread Synchronization Queue with Boost

    介绍:当开发一个多线程程序时,同步是一个很大的问题.如果你的程序需要数据流包,那么用队列是个好办法. 你可以在 http://www.boost.org/ 发现 boost 库和文档,从它的网站可以看 ...

  9. POJ 2115

    ax=b (mod n) 该方程有解的充要条件为 gcd(a,n) | b ,即 b% gcd(a,n)==0 令d=gcd(a,n) 有该方程的 最小整数解为 x = e (mod n/d) 其中e ...

  10. 如何在Mac 终端上Git 项目的一次常规操作

    首先,Git的工作流是怎样的? 你的本地仓库由 git 维护的三棵“树”组成. 第一个是你的 工作目录,它持有实际文件: 第二个是 暂存区(Index),它像个缓存区域,临时保存你的改动: 最后是 H ...