LeetCode(96): 不同的二叉搜索树
Medium!
题目描述:
给定一个整数 n,求以 1 ... n 为节点组成的二叉搜索树有多少种?
示例:
输入: 3
输出: 5
解释:
给定 n = 3, 一共有 5 种不同结构的二叉搜索树: 1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
解题思路:
这道题实际上是Catalan Number卡塔兰数的一个例子,如果对卡塔兰数不熟悉的童鞋可能真不太好做。先来看当 n = 1的情况,只能形成唯一的一棵二叉搜索树,n分别为1,2,3的情况如下所示:

1 n = 1 2 1 n = 2
/ \
1 2 1 3 3 2 1 n = 3
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3

就跟斐波那契数列一样,我们把n = 0 时赋为1,因为空树也算一种二叉搜索树,那么n = 1时的情况可以看做是其左子树个数乘以右子树的个数,左右字数都是空树,所以1乘1还是1。那么n = 2时,由于1和2都可以为跟,分别算出来,再把它们加起来即可。n = 2的情况可由下面式子算出:
dp[2] = dp[0] * dp[1] (1为根的情况)
+ dp[1] * dp[0] (2为根的情况)
同理可写出 n = 3 的计算方法:
dp[3] = dp[0] * dp[2] (1为根的情况)
+ dp[1] * dp[1] (2为根的情况)
+ dp[2] * dp[0] (3为根的情况)
由此可以得出卡塔兰数列的递推式为:
我们根据以上的分析,可以写出代码如下:
C++解法一:
我们根据以上的分析,可以写出代码如下:

class Solution {
public:
int numTrees(int n) {
vector<int> dp(n + 1, 0);
dp[0] = 1;
dp[1] = 1;
for (int i = 2; i <= n; ++i) {
for (int j = 0; j < i; ++j) {
dp[i] += dp[j] * dp[i - j - 1];
}
}
return dp[n];
}
};

LeetCode(96): 不同的二叉搜索树的更多相关文章
- Java实现 LeetCode 96 不同的二叉搜索树
96. 不同的二叉搜索树 给定一个整数 n,求以 1 - n 为节点组成的二叉搜索树有多少种? 示例: 输入: 3 输出: 5 解释: 给定 n = 3, 一共有 5 种不同结构的二叉搜索树: 1 3 ...
- Leetcode 96. 不同的二叉搜索树
题目链接 https://leetcode.com/problems/unique-binary-search-trees/description/ 题目描述 给定一个整数 n,求以 1 ... n ...
- [LeetCode]96. 不同的二叉搜索树(DP,卡特兰数)
题目 给定一个整数 n,求以 1 ... n 为节点组成的二叉搜索树有多少种? 示例: 输入: 3 输出: 5 解释: 给定 n = 3, 一共有 5 种不同结构的二叉搜索树: 1 3 3 2 1 \ ...
- LeetCode 96——不同的二叉搜索树
1. 题目 2. 解答 以 \(1, 2, \cdots, n\) 构建二叉搜索树,其中,任意数字都可以作为根节点来构建二叉搜索树.当我们将某一个数字作为根节点后,其左边数据将构建为左子树,右边数据将 ...
- LeetCode 96. 不同的二叉搜索树(Unique Binary Search Trees )
题目描述 给定一个整数 n,求以 1 ... n 为节点组成的二叉搜索树有多少种? 示例: 输入: 输出: 解释: 给定 n = , 一共有 种不同结构的二叉搜索树: \ / / / \ \ / / ...
- LeetCode 96 - 不同的二叉搜索树 - [DP]
假定 $f[n]$ 表示有 $n$ 个节点的二叉树,有多少种不同结构. 因此 $f[n] = \sum_{i=0}^{n-1} (f[i] \times f[n-1-i])$,选一个节点作为根节点,那 ...
- Leetcode:96. 不同的二叉搜索树
Leetcode:96. 不同的二叉搜索树 Leetcode:96. 不同的二叉搜索树 题目在链接中,点进去看看吧! 先介绍一个名词:卡特兰数 卡特兰数 卡特兰数Cn满足以下递推关系: \[ C_{n ...
- 【JavaScript】Leetcode每日一题-二叉搜索树的范围和
[JavaScript]Leetcode每日一题-二叉搜索树的范围和 [题目描述] 给定二叉搜索树的根结点 root,返回值位于范围 [low, high] 之间的所有结点的值的和. 示例1: 输入: ...
- 【python】Leetcode每日一题-二叉搜索树节点最小距离
[python]Leetcode每日一题-二叉搜索树节点最小距离 [题目描述] 给你一个二叉搜索树的根节点 root ,返回 树中任意两不同节点值之间的最小差值 . 示例1: 输入:root = [4 ...
- Leetcode题目96.不同的二叉搜索树(动态规划-中等)
题目描述: 给定一个整数 n,求以 1 ... n 为节点组成的二叉搜索树有多少种? 示例: 输入: 3 输出: 5 解释: 给定 n = 3, 一共有 5 种不同结构的二叉搜索树: 1 3 3 2 ...
随机推荐
- url编码解码的问题(urlencode/quote)
import urllib.parse params = { "wd":"hello人工智能" } # 将字典形式的进行编码 query_str = urlli ...
- 4-13 object类,继承和派生( super) ,钻石继承方法
1,object 类 object class A: ''' 这是一个类 ''' pass a = A() print(A.__dict__) # 双下方法 魔术方法 创建一个空对象 调用init方法 ...
- Webstorm快捷操作
设置和使用技巧:前端工具开发利器webstrom专篇...更新中 选中行上下移:cl+shift+上下箭头 展示文件结构图:view-tool_window-structure.具体的图标含义 生成注 ...
- tomcat源码之connector配置
连接 acceptor /** * Acceptor thread count. */protected int acceptorThreadCount = 0; 处理线程 private int m ...
- Spring Boot学习记录(二)--thymeleaf模板 - CSDN博客
==他的博客应该不错,没有细看 Spring Boot学习记录(二)--thymeleaf模板 - CSDN博客 http://blog.csdn.net/u012706811/article/det ...
- 线程变量---ThreadLocal类
用处:保存线程的独立变量.对一个线程类(继承自Thread) 思想:如果一个资源会引起线程竞争,那就为每一个线程配置一个资源.相比于synchronized是一种空间换时间的策略 当使用ThreadL ...
- 安卓虚拟机与Hyper-V冲突
经过各种经验,哪个安卓虚拟机跟Hyper-V都存在着冲突. 解决方案一 程序中卸载Hyper-V,之后还要再配置太麻烦. 解决方案二 1.关掉Hyper-V的启动项,命令如下. bcdedit /se ...
- Delphi 使用 Datasnap 的几种三层应用技术总结
Delphi 使用 Datasnap 进行三层应用开发,积累了几种技术,总结如下: 1.(推荐!)在 Datasnap 服务端 使用 TDatasetProvider,客户端 使用 TDSProv ...
- smarty半小时快速上手教程
一:smarty的程序设计部分: 在smarty的模板设计部分我简单的把smarty在模板中的一些常用设置做了简单的介绍,这一节主要来介绍一下如何在smarty中开始我们程序设计.下载Smarty文件 ...
- 【转】Java并发编程:并发容器之CopyOnWriteArrayList
Copy-On-Write简称COW,是一种用于程序设计中的优化策略.其基本思路是,从一开始大家都在共享同一个内容,当某个人想要修改这个内容的时候,才会真正把内容Copy出去形成一个新的内容然后再改, ...