How to proof RSA
欧拉函数 :
欧拉函数是数论中很重要的一个函数,欧拉函数是指:对于一个正整数 n ,小于 n 且和 n 互质的正整数(包括 1)的个数,记作 φ(n) 。
完全余数集合:
定义小于 n 且和 n 互质的数构成的集合为 Zn ,称呼这个集合为 n 的完全余数集合。 显然 |Zn| =φ(n) 。
有关性质:
对于素数 p ,φ(p) = p -1 。
对于两个不同素数 p, q ,它们的乘积 n = p * q 满足 φ(n) = (p -1) * (q -1) 。
这是因为 Zn = {1, 2, 3, ... , n - 1} - {p, 2p, ... , (q - 1) * p} - {q, 2q, ... , (p - 1) * q} , 则 φ(n) = (n - 1) - (q - 1) - (p - 1) = (p -1) * (q -1) =φ(p) * φ(q) 。
欧拉定理 :
对于互质的正整数 a 和 n ,有 a^φ(n) ≡ 1 mod n 。
证明:
( 1 ) 令 Zn = {x1, x2, ..., xφ(n)} , S = {a * x1 mod n, a * x2 mod n, ... , a * xφ(n) mod n} ,
则 Zn = S 。
① 因为 a 与 n 互质, xi (1 ≤ i ≤ φ(n)) 与 n 互质, 所以 a * xi 与 n 互质,所以 a * xi mod n ∈ Zn 。
② 若 i ≠ j , 那么 xi ≠ xj,且由 a, n互质可得 a * xi mod n ≠ a * xj mod n (消去律)。
( 2 ) a^φ(n) * x1 * x2 *... * xφ(n) mod n
≡ (a * x1) * (a * x2) * ... * (a * xφ(n)) mod n
≡ (a * x1 mod n) * (a * x2 mod n) * ... * (a * xφ(n) mod n) mod n
≡ x1 * x2 * ... * xφ(n) mod n
对比等式的左右两端,因为 xi (1 ≤ i ≤ φ(n)) 与 n 互质,所以 a^φ(n) ≡ 1 mod n (消去律)。
注:
消去律:如果 gcd(c,p) = 1 ,则 ac ≡ bc mod p ⇒ a ≡ b mod p 。
费马定理 :
若正整数 a 与素数 p 互质,则有 ^ap - 1 ≡ 1 mod p 。
证明这个定理非常简单,由于 φ(p) = p -1,代入欧拉定理即可证明。
How to proof RSA的更多相关文章
- RSA签名的PSS模式
本文由云+社区发表 作者:mariolu 一.什么是PSS模式? 1.1.两种签名方式之一RSA-PSS PSS (Probabilistic Signature Scheme)私钥签名流程的一种填充 ...
- Authorization Bypass in RSA NetWitness
https://www.cnblogs.com/iAmSoScArEd/ SEC Consult Vulnerability Lab Security Advisory < 20190515-0 ...
- 加密算法大全图解 :密码体系,对称加密算法,非对称加密算法,消息摘要, Base64,数字签名,RSA,DES,MD5,AES,SHA,ElGamal,
1. 加密算法大全: ***************************************************************************************** ...
- “不给力啊,老湿!”:RSA加密与破解
作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 加密和解密是自古就有技术了.经常看到侦探电影的桥段,勇敢又机智的主角,拿着一长串毫 ...
- .NET 对接JAVA 使用Modulus,Exponent RSA 加密
最近有一个工作是需要把数据用RSA发送给Java 虽然一开始标准公钥 net和Java RSA填充的一些算法不一样 但是后来这个坑也补的差不多了 具体可以参考 http://www.cnblogs. ...
- [C#] 简单的 Helper 封装 -- SecurityHelper 安全助手:封装加密算法(MD5、SHA、HMAC、DES、RSA)
using System; using System.IO; using System.Security.Cryptography; using System.Text; namespace Wen. ...
- PHP的学习--RSA加密解密
PHP服务端与客户端交互或者提供开放API时,通常需要对敏感的数据进行加密,这时候rsa非对称加密就能派上用处了. 举个通俗易懂的例子,假设我们再登录一个网站,发送账号和密码,请求被拦截了. 密码没加 ...
- RSA非对称加密,使用OpenSSL生成证书,iOS加密,java解密
最近换了一份工作,工作了大概一个多月了吧.差不多得有两个月没有更新博客了吧.在新公司自己写了一个iOS的比较通用的可以架构一个中型应用的不算是框架的一个结构,并已经投入使用.哈哈 说说文章标题的相关的 ...
- RSA算法
RSA.h #ifndef _RSA_H #define _RSA_H #include<stdio.h> #include<iostream> #include<mat ...
随机推荐
- 单点登录SSO:概述与示例
目录 概述 演示一:零改造实施单点登录 演示二: 单点注销 演示三:集成AD认证 演示四:客户端单点登录 演示五:移动端单点登录 单点登录SSO概述 本系列将由浅入深的,带大家掌握最新单点登录SSO方 ...
- koa-router
为了处理URL,我们需要引入koa-router这个middleware,让它负责处理URL映射. 我们把上一节的hello-koa工程复制一份,重命名为url-koa. 先在package.json ...
- SQL Server(2000,2005,2008):恢复/回滚时间比预期长(译)
我已经讨论了各种确定恢复状态的方法,但是本周我参与了一个围绕回滚的有趣讨论.交易已经运行了14个小时,然后发出了KILL SPID.SPID进入回滚,并发生2天和4小时. 自然的问题是为什么不14小时 ...
- H5 文字属性
03-文字属性 我是文字 我是文字 abc我是段落 <!DOCTYPE html> <html lang="en"> <head> <me ...
- Pytorch 初识
文章目录 一个简单的回归网络的例子 再来一个例子 官方教程上图片识别的例子 import torch import torch.nn as nn import torch.nn.functional ...
- Python的math模块
ceil(x) 返回整数 >>> math.ceil(-1.273) -1 >>> math.ceil(1.33) 2 copysign(x,y) 把y的符号给x, ...
- 小小知识点(二)——如何修改win10 的C盘中用户下的文件夹名称
1.以管理员身份登录计算机 在win10桌面的开始界面处有个用户头像,点击在里面找到administrator: 如果没有,则需进行如下设置: (1)右键计算机,双击管理,找到如下所示的用户中的adm ...
- Redis集群之Jedis的使用
maven依赖 <!-- Redis客户端 --> <dependency> <groupId>redis.clients</groupId> < ...
- Python之加环境变量
1.python找文件是先去当前文件所在的文件夹下找,也就是bin目录下找 2.如果bin目录里找不到,再去python的环境变量里找 如果有pycharm,那么直接点右键-选择Mark Direct ...
- Java 学习使用常见的开源连接池
目录 连接池介绍 自定义连接池 JDBC Tomcat Pool DBCP(DataBase Connection Pool) 使用配置文件来设置DBCP C3P0 Druid 连接池介绍 在说连接池 ...