题意:现在有一个数写在黑板上,它以等概率转化为它的一个约数,可以是1,问经过k次转化后这个数的期望值

题解:如果这个数是一个素数的n次方,那么显然可以用动态规划来求这个数的答案,否则的话,就对每个素因数求答案,再相乘

参考博客:https://www.cnblogs.com/birchtree/p/10234203.html

ac代码:

#include<bits/stdc++.h>
#define ll long long
#define pa pair<int,int>
using namespace std;
const int maxn=100+10;
const int mod=1e9+7;
ll po[70],dp[10000+10][70];
int m;
ll qpow(ll x,ll n)
{
ll res=1,b=x;
while(n)
{
if(n&1)res=res*b%mod;
b=b*b%mod;
n/=2;
//cout<<<<endl;
}
return res;
}
ll solve(int a,ll b)
{
memset(dp,0,sizeof(dp));
dp[0][a]=1;
for(int i=1;i<=m;i++)
for(int j=0;j<=a;j++)
for(int k=j;k<=a;k++)
dp[i][j]=(dp[i][j]+dp[i-1][k]*po[k+1])%mod;
ll res=0;
for(int i=0;i<=a;i++)
res=(res+dp[m][i]*qpow(b,i)%mod)%mod;
return res;
}
int main()
{
ll ans=1,n;
for(int i=1;i<70;i++)
po[i]=qpow(i,mod-2);
scanf("%lld %d",&n,&m);
for(ll i=2;i*i<=n;i++)
{
if(n%i==0)
{
int k=0;
while(n%i==0)
{
//cout<<1<<endl;
k++;
n/=i;
}
ans=ans*solve(k,i)%mod;
}
}
if(n!=1)ans=ans*solve(1,n)%mod;
printf("%lld\n",ans);
return 0;
}

  

codeforces#1097 D. Makoto and a Blackboard(dp+期望)的更多相关文章

  1. CodeForces - 1097D:Makoto and a Blackboard (积性)

    Makoto has a big blackboard with a positive integer n written on it. He will perform the following a ...

  2. codeforces1097D Makoto and a Blackboard 数学+期望dp

    题目传送门 题目大意: 给出一个n和k,每次操作可以把n等概率的变成自己的某一个因数,(6可以变成1,2,3,6,并且概率相等),问经过k次操作后,期望是多少? 思路:数学和期望dp  好题好题!! ...

  3. CF1097D Makoto and a Blackboard(期望)

    [Luogu-CF1097D] 给定 \(n,k\)一共会进行 \(k\) 次操作 , 每次操作会把 \(n\) 等概率的变成 \(n\) 的某个约数 求操作 \(k\) 次后 \(n\) 的期望是多 ...

  4. CF1097D Makoto and a Blackboard

    题目地址:CF1097D Makoto and a Blackboard 首先考虑 \(n=p^c\) ( \(p\) 为质数)的情况,显然DP: 令 \(f_{i,j}\) 为第 \(i\) 次替换 ...

  5. codeforces 1097 Hello 2019

    又回来了.. A - Gennady and a Card Game 好像没什么可说的了. #include<bits/stdc++.h> using namespace std; cha ...

  6. Codeforces 219D. Choosing Capital for Treeland (树dp)

    题目链接:http://codeforces.com/contest/219/problem/D 树dp //#pragma comment(linker, "/STACK:10240000 ...

  7. [CodeForces - 1272D] Remove One Element 【线性dp】

    [CodeForces - 1272D] Remove One Element [线性dp] 标签:题解 codeforces题解 dp 线性dp 题目描述 Time limit 2000 ms Me ...

  8. Codeforces 878 E. Numbers on the blackboard

    Codeforces 878 E. Numbers on the blackboard 解题思路 有一种最优策略是每次选择最后面一个大于等于 \(0\) 的元素进行合并,这样做完以后相当于给这个元素乘 ...

  9. D Makoto and a Blackboard

    Makoto and a Blackboard time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

随机推荐

  1. [20170604]12c Top Frequency histogram补充.txt

    [20170604]12c Top Frequency histogram补充.txt 1.环境:SCOTT@test01p> @ ver1PORT_STRING                 ...

  2. vue分页组件二次封装---每页请求特定数据

    关键步骤: 1.传两个参数:pageCount (每页条数).pageIndex (页码数): 2.bind方法的调用 <!-- 这部分是分页 --> <div class=&quo ...

  3. Django之--POST方法处理表单请求

    上一篇:Django之--MVC的Model 演示了如何使用GET方法处理表单请求,本文讲述直接在当前页面返回结果,并使用更常用的POST方法处理. 一.首先我们修改下page.html <!D ...

  4. Python的变量以及类型

    1.程序是用来处理数据的,变量就是用来存储数据的  num1 = 100 2.为了更充分的利用内存空间以及更有效率的管理内存,变量是有不同的类型 3.怎样知道一个变量的类型呢? 3.1 在python ...

  5. Linux安装Python3后,如何使用pip命令

    系统环境:CentOS7.4 已安装好Python3.6.5 Python3.6.5自带pip 使用pip安装第三方库,可运行指令,例如安装paramiko库: python -m pip insta ...

  6. PHP中生产不重复随机数的方法

    PHP内置函数不重复随机数        需求:要生成一个数组,这个数组里面有10个元素,都是整形,并且是1-60之间不重复的随机数.  代码: 代码示例: 1 2 3 4 5 6 7 8 9 10 ...

  7. LeetCode算法题-Best Time to Buy and Sell Stock II

    这是悦乐书的第173次更新,第175篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第32题(顺位题号是122).假设有一个数组,其中第i个元素是第i天给定股票的价格.设计 ...

  8. 【算法】LeetCode算法题-Valid Parentheses

    这是悦乐书的第147次更新,第149篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第6题(顺位题号是20),给定一个只包含字符'(',')','{','}','['和'] ...

  9. webpack常见的配置项

    使用vue init webpack test(项目文件夹名)命令初始化一个vue项目,cd test,然后安装依赖npm install之后会生成一些默认的文件夹和文件,这些文件和文件夹中有些和配置 ...

  10. CISCO ACL配置

    ACL:access(访问)control(控制)list(列表),用来实现防火墙规则. 访问控制列表的原理对路由器接口来说有两个方向出:已经经路由器的处理,正离开路由器接口的数据包入:已经到达路由器 ...