轮迭代时验证集的日志:

log/compute_prob_valid.1000.log:

LOG (nnet3-chain-compute-prob[5.5.100-d66be]:PrintTotalStats():nnet-chain-diagnostics.cc:194) Overall log-probability for 'output-xent' is -2.14993 per frame, over 18230 frames.

LOG (nnet3-chain-compute-prob[5.5.100-d66be]:PrintTotalStats():nnet-chain-diagnostics.cc:194) Overall log-probability for 'output' is -0.238675 per frame, over 18230 frames.

其中的Overall log-probability是指,这次迭代(iteration)的平均损失函数的值。

 
 

对于chain,其损失函数为LF-MMI:

 
 

其中

 
 

nnet3/nnet-chain-diagnostics.cc

void NnetChainComputeProb::ProcessOutputs(const NnetChainExample &eg,

NnetComputer *computer) {

std::vector<NnetChainSupervision>::const_iterator iter = eg.outputs.begin(),

end = eg.outputs.end();

for (; iter != end; ++iter) {

BaseFloat tot_like, tot_l2_term, tot_weight;

//...

ComputeChainObjfAndDeriv(chain_config_, den_graph_,

sup.supervision, nnet_output,

&tot_like, &tot_l2_term, &tot_weight,

(nnet_config_.compute_deriv ? &nnet_output_deriv :

NULL), (use_xent ? &xent_deriv : NULL));

//...

ChainObjectiveInfo &totals = objf_info_[sup.name];

totals.tot_weight += tot_weight;

totals.tot_like += tot_like;

totals.tot_l2_term += tot_l2_term;

//...

}

}

 
 

void ComputeChainObjfAndDeriv(...){

*objf = num_logprob_weighted - den_logprob_weighted;

//supervision.weight:样本(egs)的权重,通常为1.0

//supervision.num_sequences:Supevision对象(由lattice或对齐生成)的数量,即FST的数量,或语句的数量

//supervision.frames_per_sequence:每个Supevision中的帧数

//weight即一个archive中的带权帧数

*weight = supervision.weight * supervision.num_sequences *

supervision.frames_per_sequence;

}

//似然即一个archive的平均对数似然

BaseFloat like = (info.tot_like / info.tot_weight),

//一个archive的平均L2正则化项

l2_term = (info.tot_l2_term / info.tot_weight),

//一个archive的平均准则函数值

tot_objf = like + l2_term;

 
 

由于MMI的目标是最大化互信息值,因此,需要对准则函数进行最大化,或对负准则函数进行最小化。

 
 

因此,以下日志中的"Overall log-probability"值越大越好。

log/compute_prob_valid.1000.log:

LOG (nnet3-chain-compute-prob[5.5.100-d66be]:PrintTotalStats():nnet-chain-diagnostics.cc:194) Overall log-probability for 'output-xent' is -2.14993 per frame, over 18230 frames.

LOG (nnet3-chain-compute-prob[5.5.100-d66be]:PrintTotalStats():nnet-chain-diagnostics.cc:194) Overall log-probability for 'output' is -0.238675 per frame, over 18230 frames.

 
 

Chain训练准则的计算的更多相关文章

  1. Java实现 蓝桥杯 算法训练 多阶乘计算

    试题 算法训练 多阶乘计算 问题描述 我们知道,阶乘n!表示n*(n-1)(n-2)-21, 类似的,可以定义多阶乘计算,例如:5!!=531,依次可以有n!..!(k个'!',可以简单表示为n(k) ...

  2. 蓝桥杯 算法训练 ALGO-156 表达式计算

    算法训练 表达式计算   时间限制:1.0s   内存限制:256.0MB 问题描述 输入一个只包含加减乖除和括号的合法表达式,求表达式的值.其中除表示整除. 输入格式 输入一行,包含一个表达式. 输 ...

  3. UVA442 Matrix Chain Multiplication 矩阵运算量计算(栈的简单应用)

    栈的练习,如此水题竟然做了两个小时... 题意:给出矩阵大小和矩阵的运算顺序,判断能否相乘并求运算量. 我的算法很简单:比如(((((DE)F)G)H)I),遇到 (就cnt累计加一,字母入栈,遇到) ...

  4. SSD训练网络参数计算

    一个预测层的网络结构如下所示: 可以看到,是由三个分支组成的,分别是"PriorBox"层,以及conf.loc的预测层,其中,conf与loc的预测层的参数是由PriorBox的 ...

  5. Kaldi中的Chain模型

    Chain模型的训练流程 链式模型的训练过程是MMI的无网格的版本,从音素级解码图生成HMM,对其使用前向后向算法,获得分母状态后验,通过类似的方式计算分子状态后验,但限于对应于转录的序列. 对于神经 ...

  6. SVM训练结果参数说明 训练参数说明 归一化加快速度和提升准确率 归一化还原

    原文:http://blog.sina.com.cn/s/blog_57a1cae80101bit5.html 举例说明 svmtrain -s 0 -?c 1000 -t 1 -g 1 -r 1 - ...

  7. 明风:分布式图计算的平台Spark GraphX 在淘宝的实践

    快刀初试:Spark GraphX在淘宝的实践 作者:明风 (本文由团队中梧苇和我一起撰写,并由团队中的林岳,岩岫,世仪等多人Review,发表于程序员的8月刊,由于篇幅原因,略作删减,本文为完整版) ...

  8. caffe中全卷积层和全连接层训练参数如何确定

    今天来仔细讲一下卷基层和全连接层训练参数个数如何确定的问题.我们以Mnist为例,首先贴出网络配置文件: name: "LeNet" layer { name: "mni ...

  9. 如何高效的通过BP算法来训练CNN

    < Neural Networks Tricks of the Trade.2nd>这本书是收录了1998-2012年在NN上面的一些技巧.原理.算法性文章,对于初学者或者是正在学习NN的 ...

随机推荐

  1. 10元买啤酒问题Java解法

    10元去买啤酒,2元一瓶.每两个瓶可以换一瓶啤酒,每四个瓶盖可以换一瓶啤酒.最多买几瓶? public class Java { public static void main(String[] ar ...

  2. 洛谷P4362 贪吃的九头龙

    大意就是把一棵树的点染成m种颜色,其中1号点的颜色必须染恰好k个节点. 总代价是所有两端点颜色相同的边的边权. 求最小代价. 解:可以分为m == 2和m > 2两个题. m > 2时有代 ...

  3. 【洛谷P1303 A*B Problem】

    题目描述 求两数的积. 输入输出格式 输入格式: 两行,两个数. 输出格式: 积 输入输出样例 输入样例#1: 1 2 输出样例#1: 2 说明 每个数字不超过10^2000,需用高精 emm,显然本 ...

  4. 第二篇 - python爬取免费代理

    代理的作用参考https://wenda.so.com/q/1361531401066511?src=140 免费代理很多,但也有很多不可用,所以我们可以用程序对其进行筛选.以能否访问百度为例. 1. ...

  5. mysql存储过程造数据取一个基准用户的各种类型都取一条数据作为基准数据,循环插入

    CREATE DEFINER=`user`@`%` PROCEDURE `create_upload_data`(in start_userid integer,in create_counter i ...

  6. 1411 - Ants(巨人与鬼)

    参考博客 紫薯P230 题意:给出平面上n个白点n个黑点,要求两两配对,且配对所连线段没有交点. 紫薯思路:找出y坐标最小的点,如果多个,考虑x最小的.将其他点相对于这个点按极角从小到大排序,然后开始 ...

  7. 2017-12-15python全栈9期第二天第六节之三次登陆机会升级版再试试

    #!/user/bin/python# -*- coding:utf-8 -*-#当剩余为0次机会时.询问用户是否再试试.如果同意那就再给三次机会.可一直继续username = 'zd'passwo ...

  8. 【MSSQL】SQL Server的日期和时间类型

    参考:SQL Server的日期和时间类型 SQL Server使用 Date 表示日期,time表示时间,使用datetime和datetime2表示日期和时间. 1.秒的精度 秒的精度是指TSQL ...

  9. SpringBoot笔记十三:引入webjar资源和国际化处理

    目录 什么是webjar 怎么使用webjar 国际化 新建国际化配置文件 配置配置文件 使用配置文件 我们先来看一个html,带有css的,我们就以这个为准来讲解. 资源可以去我网盘下载 链接:ht ...

  10. 在Ajax返回多个值

    <html> <head> <title>AjaxTest</title> <script type="text/javascript& ...