Redis实现世界杯排行榜功能(实战)
转载请注明出处:https://www.cnblogs.com/wenjunwei/p/9754346.html
需求
前段时间,做了一个世界杯竞猜积分排行榜。对世界杯64场球赛胜负平进行猜测,猜对+1分,错误+0分,一人一场只能猜一次。
1.展示前一百名列表。
2.展示个人排名(如:张三,您当前的排名106579)。
分析
一开始打算直接使用mysql数据库来做,遇到一个问题,每个人的分数都会变化,如何能够获取到个人的排名呢?数据库可以通过分数进行row_num排序,但是这个方法需要进行全表扫描,当参与的人数达到10000的时候查询就非常慢了。
redis的排行榜功能就完美锲合了这个需求。来看看我是怎么实现的吧。
实现
一.redis sorts sets简介
Sorted Sets数据类型就像是set和hash的混合。与sets一样,Sorted Sets是唯一的,不重复的字符串组成。可以说Sorted Sets也是Sets的一种。
Sorted Sets是通过Skip List(跳跃表)和hash Table(哈希表)的双端口数据结构实现的,因此每次添加元素时,Redis都会执行O(log(N))操作。所以当我们要求排序的时候,Redis根本不需要做任何工作了,早已经全部排好序了。元素的分数可以随时更新。
二.springboot 中使用RedisTemplate
本文主要通过redisTemplate来操作redis,当然也可以使用redis-client,看个人喜好.
我在本机开启了一个单点的redis,配置文件如下
server:
port: 9001
spring:
redis:
database: 0
url: redis://user:123@127.0.0.1:6379
host: 127.0.0.1
password: 123
port: 6379
ssl: false
timeout: 5000
Maven依赖引入如下
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>2.0.4.RELEASE</version>
</parent> <dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
</dependency>
</dependencies>
三.代码实现
1.注入redis,将key声明为常量SCORE_RANK
@Autowired
private StringRedisTemplate redisTemplate; public static final String SCORE_RANK = "score_rank";
2.新增默认排行数据
这里使用for循环创建集合,再使用批量新增10万条数据
/**
* 批量新增
*/
@Test
public void batchAdd() {
Set<ZSetOperations.TypedTuple<String>> tuples = new HashSet<>();
long start = System.currentTimeMillis();
for (int i = 0; i < 100000; i++) {
DefaultTypedTuple<String> tuple = new DefaultTypedTuple<>("张三" + i, 1D + i);
tuples.add(tuple);
}
System.out.println("循环时间:" +( System.currentTimeMillis() - start));
Long num = redisTemplate.opsForZSet().add(SCORE_RANK, tuples);
System.out.println("批量新增时间:" +(System.currentTimeMillis() - start));
System.out.println("受影响行数:" + num);
}
//输出
循环时间:56
批量新增时间:1015
受影响行数:100000
3.获取前10名(根据分数倒序)
提供了两种获取方法,返回值一个带有score,一个没有
/**
* 获取排行列表
*/
@Test
public void list() { Set<String> range = redisTemplate.opsForZSet().reverseRange(SCORE_RANK, 0, 10);
System.out.println("获取到的排行列表:" + JSON.toJSONString(range));
Set<ZSetOperations.TypedTuple<String>> rangeWithScores = redisTemplate.opsForZSet().reverseRangeWithScores(SCORE_RANK, 0, 10);
System.out.println("获取到的排行和分数列表:" + JSON.toJSONString(rangeWithScores));
}
//输出
获取到的排行列表:["张三99999","张三99998","张三99997","张三99996","张三99995","张三99994","张三99993","张三99992","张三99991","张三99990","张三99989"]
获取到的排行和分数列表:[{"score":100000.0,"value":"张三99999"},{"score":99999.0,"value":"张三99998"},{"score":99998.0,"value":"张三99997"},{"score":99997.0,"value":"张三99996"},{"score":99996.0,"value":"张三99995"},{"score":99995.0,"value":"张三99994"},{"score":99994.0,"value":"张三99993"},{"score":99993.0,"value":"张三99992"},{"score":99992.0,"value":"张三99991"},{"score":99991.0,"value":"张三99990"},{"score":99990.0,"value":"张三99989"}]
4.新增李四的分数
将“李四”加入到排行榜中,redis会在插入的时候进行,在取出的时候就可以直接取出,不需要再做排序操作
/**
* 单个新增
*/
@Test
public void add() {
redisTemplate.opsForZSet().add(SCORE_RANK, "李四", 8899);
}
5.获取李四单人的排行
/**
* 获取单个的排行
*/
@Test
public void find(){
Long rankNum = redisTemplate.opsForZSet().reverseRank(SCORE_RANK, "李四");
System.out.println("李四的个人排名:" + rankNum); Double score = redisTemplate.opsForZSet().score(SCORE_RANK, "李四");
System.out.println("李四的分数:" + score);
}
//输出
李四的个人排名:91101
李四的分数:8899.0
6.统计分数区间人数
redis还提供了统计分数区间的方法,如下
/**
* 统计两个分数之间的人数
*/
@Test
public void count(){
Long count = redisTemplate.opsForZSet().count(SCORE_RANK, 8001, 9000);
System.out.println("统计8001-9000之间的人数:" + count);
}
//输出
统计8001-9000之间的人数:1001
7.获取集合的基数(数量大小)
/**
* 获取整个集合的基数(数量大小)
*/
@Test
public void zCard(){
Long aLong = redisTemplate.opsForZSet().zCard(SCORE_RANK);
System.out.println("集合的基数为:" + aLong);
}
//输出
集合的基数为:100001
8.使用加法操作分数
这个方法是直接在原有的score上使用加法;如果没有这个元素,则会创建,并且score初始为0.再使用加法
/**
* 使用加法操作分数
*/
@Test
public void incrementScore(){
Double score = redisTemplate.opsForZSet().incrementScore(SCORE_RANK, "李四", 1000);
System.out.println("李四分数+1000后:" + score);
}
//输出
李四分数+1000后:9899.0
四.归纳
在以上测试类中我们使用了redis的那些功能呢?在以上的例子中我们使用了单个新增,批量新增,获取前十,获取单人排名这些操作,但是redisTemplate还提供了更多的方法。
新增or更新
有三种方式,一种是单个,一种是批量,对分数使用加法(如果不存在,则从0开始加)。
//单个新增or更新
Boolean add(K key, V value, double score);
//批量新增or更新
Long add(K key, Set<TypedTuple<V>> tuples);
//使用加法操作分数
Double incrementScore(K key, V value, double delta);
删除
删除提供了三种方式:通过key/values删除,通过排名区间删除,通过分数区间删除。
//通过key/value删除
Long remove(K key, Object... values); //通过排名区间删除
Long removeRange(K key, long start, long end); //通过分数区间删除
Long removeRangeByScore(K key, double min, double max);
查
1.列表查询:
分为两大类,正序和逆序。以下只列表正序的,逆序的只需在方法前加上reverse即可
//通过排名区间获取列表值集合
Set<V> range(K key, long start, long end); //通过排名区间获取列表值和分数集合
Set<TypedTuple<V>> rangeWithScores(K key, long start, long end); //通过分数区间获取列表值集合
Set<V> rangeByScore(K key, double min, double max); //通过分数区间获取列表值和分数集合
Set<TypedTuple<V>> rangeByScoreWithScores(K key, double min, double max); //通过Range对象删选再获取集合排行
Set<V> rangeByLex(K key, Range range); //通过Range对象删选再获取limit数量的集合排行
Set<V> rangeByLex(K key, Range range, Limit limit);
2.单人查询
可获取单人排行,和通过key/value获取分数。以下只列表正序的,逆序的只需在方法前加上reverse即可
//获取个人排行
Long rank(K key, Object o); //获取个人分数
Double score(K key, Object o);
统计
统计分数区间的人数,统计集合基数。
//统计分数区间的人数
Long count(K key, double min, double max); //统计集合基数
Long zCard(K key);
结语
以上就是redis中使用排行榜功能的一些例子,和对redis的操作方法了。redis不仅仅只是作为缓存,它更是数据库,提供了许多的功能,我们都可以好好的利用。
在这里我使用redis来实现了世界杯积分排行的展示,无论是在批量更新或是获取个人排行等方便,都有着很高效率,也降低了对数据库操作的压力,达到了很好的效果。
感谢您的阅读,如果您觉得阅读本文对您有帮助,请点一下“推荐”按钮。本文欢迎各位转载,但是转载文章之后必须在文章开头给出原文链接。
Redis实现世界杯排行榜功能(实战)的更多相关文章
- Redis实现排行榜功能(实战)
需求前段时间,做了一个世界杯竞猜积分排行榜.对世界杯64场球赛胜负平进行猜测,猜对+1分,错误+0分,一人一场只能猜一次.1.展示前一百名列表.2.展示个人排名(如:张三,您当前的排名106579). ...
- Redis的Sorted-Sets排行榜功能实现
Redis的ZSet排行榜功能实现 1. 功能需求 类似给用户n张图片, 用户左滑不喜欢右滑喜欢.所以每个用户就会有一些喜欢的图片集合和不喜欢的图片集合.现在我们要做一个将按照一个算法将喜欢的排到前面 ...
- 基于redis排行榜的实战总结
前言: 之前写过排行榜的设计和实现, 不同需求其背后的架构和设计模型也不一样. 平台差异, 有的立足于游戏平台, 为多个应用提供服务, 有的仅限于单个游戏.排名范围差异, 有的面向全局排名, 有的只做 ...
- 使用 Redis 实现排行榜功能
排行榜功能是一个很普遍的需求.使用 Redis 中有序集合的特性来实现排行榜是又好又快的选择. 一般排行榜都是有实效性的,比如“用户积分榜”.如果没有实效性一直按照总榜来排,可能榜首总是几个老用户,对 ...
- 使用 Redis 实现排行榜功能 (转载 https://segmentfault.com/a/1190000002694239)
排行榜功能是一个很普遍的需求.使用 Redis 中有序集合的特性来实现排行榜是又好又快的选择. 一般排行榜都是有实效性的,比如"用户积分榜".如果没有实效性一直按照总榜来排,可能榜 ...
- Redis 有序聚合实现排行榜功能
排行榜功能是一个很普遍的需求.使用 Redis 中有序集合的特性来实现排行榜是又好又快的选择.Redis有序集合非常适用于有序不重复数据的存储 一般排行榜都是有实效性的,比如“用户积分榜”.如果没有实 ...
- redis实现排行榜功能
目录 加入排行榜 操作排行榜 redis的zset可以很方便地用来实现排行榜功能,下面简单介绍python如何使用redis实现排行榜功能 加入排行榜 获取redis实例 import redis m ...
- 用户积分排行榜功能-Redis实现
一.排行榜功能简介 排行榜功能是一个很普遍的需求.使用 Redis 中有序集合(SortedSet)的特性来实现排行榜是又好又快的选择. 一般排行榜都是有实效性的,比如交通数据流中的路口/路段的车流量 ...
- 【接口设计】用户积分排行榜功能-Redis实现
一.排行榜功能简介 排行榜功能是一个很普遍的需求.使用 Redis 中有序集合(SortedSet)的特性来实现排行榜是又好又快的选择. 一般排行榜都是有实效性的,比如交通数据流中的路口/路段的车流量 ...
随机推荐
- Python数据结构之单链表
Python数据结构之单链表 单链表有后继结点,无前继结点. 以下实现: 创建单链表 打印单链表 获取单链表的长度 判断单链表是否为空 在单链表后插入数据 获取单链表指定位置的数据 获取单链表指定元素 ...
- C语言向上、向下取整
C语言有以下几种取整方法: 1.直接赋值给整数变量.如: int i = 2.5; 或 i = (int) 2.5; 这种方法采用的是舍去小数部分 2.C/C++中的整数除法运算符“/”本身就有取整功 ...
- 学习Java的进度
这周我们通过老师的讲解带着我们回到了第八周的知识点.lambda表达式也是一种简化程序的好方法,通过回调程序的测试可以对比出lambda 表达式少的不是一两行代码,可以少了类中方法的定义,直接使用.内 ...
- Javascript高级编程学习笔记(48)—— HTML5
HTML变动最大的版本应该就是HTML5了,这里就介绍一些 HTML5新增的DOM相关的API 与类相关的扩充 HTML4在普及后有一个十分重要的变化,即class属性使用的场景越来越多 所以HTML ...
- 基于nodemailer使用阿里云企业邮箱发送邮件(526错误的解决)
在虽然日常生活中,QQ,微信等即时聊天工具几乎主导了人们的生活,但是邮件依然是现代生活不可缺少的一部分.这篇文章主要讲述使用node.js 中的nodemail模块操作阿里云的企业邮箱发送邮件 (52 ...
- [Postman]Postman导航(3)
Postman提供了一个多窗口和多标签界面,供您使用API. 此界面设计为您提供尽可能多的API空间. 侧边栏 邮差侧边栏可让您查找和管理请求和集合.侧边栏有两个主要选项卡: 历史记录 和 ...
- 边学边做,简单的 GraphQL 实例
项目中有功能要调用 API,对方 API 用的是 GraphQL 实现,就简单学了下,感叹技术进步真快,Facebook 发明的这玩意儿咋这么牛逼,使前端开发人员变得主动起来,想要什么接口.返回什么结 ...
- 使用QNetworkAccessManager实现Qt的FTP下载服务
从Qt5开始,官方推荐使用QNetworkAccessManager进行Ftp和http的上传和下载操作:Qt4中使用的QtFtp模块即作为独立模块,需要自己从github上进行下载编译后使用(官方地 ...
- 橙色优学:Java编程怎么提升技术,Java编程思维至关重要
橙色优学了解做为程序员,一旦进入技术行列,就开启了持续学习的道路,更迭迅速的互联网时代,技术自然也是一代一代的更新,在技术进阶的道路上,要不断吸收新的想法和技术知识. 牛逼的人总是让人羡慕,但如何才能 ...
- slf4j日志门面担当
一.简介 slf4j主要是为了给Java日志访问提供一个标准.规范的API框架,其主要意义在于提供接口,具体的实现可以交由其他日志框架,例如log4j和logback等.当然slf4j自己也提供了功能 ...