1.算数基本定理:

对于任意的大于1的正整数N,N一定能够分解成有限个质数的乘积,即

其中P1<P2<...<Pk,a1,a2,...,ak>=1;

证:

存在性:

若存在最小的N不满足条件,当N为质数是,显然不成立;当N为合数时,存在P,使得N=P*(N/P),N/P<N,与假设N为最小的矛盾,故一定存在;

即:假设N为最小的

当N为质数直接gg

当N为合数还是gg

故不存在...

唯一性:

假设N的分解不唯一

设存在最小的N,使得N=p1r1 p2r2  .... pkrk且N=q1t1  q2t2 .....qntn

则p1|q1t1  q2t2 .....qntn

假设p1=q1,且r1>=t1,那么两个式子同时除以p1t1

有p1r1-t1.....=q10  .....

而经过变换后的式子要小于原式

这与假设N为最小的不满足的矛盾

(A是一个<=n的正整数     两个条件至少有一个成立)

2.素数的判定

Miller-rabin素性测试

如果n为素数,取a<n,设n-1=d*2r,则要么ad≡1(mod n)要么存在0<=i<r,使得ad*2^t≡-1(mod n),要么存在0<=i<r,使得ad*2^t≡-1(mod n)(有可能都满足)

任意一个a,如果满足这两个条件,n有可能是质数

     但a如果不满足这两个条件中的任何一个,它一定不是质数

     找k个a,如果都满足这两个条件,k-1个“更”有可能是质数

如果n是素数,取a<n,舍n-1=d*2r,则要么ad≡1(mod n),要么存在0<=i<r,使得a

选2,3,5,7,13,29,37,89,int范围内不可能出错

部分代码:

 int gg[]={,,,,,,,};

 long long kuaisumi(long long a,long long b1,long long c)
{
long long i=a;
while(b1)
{
if(b1&)
{
s=(s*i)%c;
}
i=(i*i)%c;
b1>>=;
}
return s%c;
} bool miller_rabin(int a,int n)
{
int d=n-,r=;
while(d%==)
d/=,r++;
int x=kuaisumi(a,d,n);
if(x==)return true;
for(int i=;i<r;i++)
{
if(x==n-)return true ;
x=(long long )x*x%n;
}
return false;//可以对照素性测试看
} bool is_prime (int n)
{
if(n<=)return false ;
for(int a=;a<;a++)
if(n==gg[a])return true;//一个个试
for(int a=;a<;a++)
if(!miller_rabin(gg[a],n))return false;
return true;
}

3,最大公因数

Gcd(a,b)=max{x(x|a,x|b)}

欧几里得算法的核心思想

gcd(a,b)=gcd(b,a-b)==>gcd(a,b)=gcd(b,a%b)

4.裴蜀定理

给定a,b,c,则ax+by=c有整数解的充要条件是gcd(a,b)|c

来证一下

不妨使用唯一分解定理

充分性:

d=gcd(a,b),

则d|a,d|b==>d|ax+by=c==>d|c充分性证毕

必要性:

设d=gcd(a,b),s=min(ax+by),s>0

a/s=q......r(0<=r<s)==>r=a-qs=a-q(ax+by)=(1-qx)a-qyb

因为s=min(ax+by),所以r=0==>s|a&&s|b==>

1-------s|gcd(a,b)

s=ax+by=b(nd)+y(md)==>

2-------d|s

综合1,2,得到s=d

证毕

一个应用

请证明:设p为质数,若p|ab,则p|a或p|b

证:

当p|a时,显然成立

否则,gcd(p,a)=1==>xp+ya=1

b=b*1=b(xp+ya)=pxb+yab

p|pxb==>p|yab

5.拓展欧几里得

6.中国剩余定理

x≡a1(mod p1)   x≡a2(mod p2)   O(min(p1,p2))

x=a1,a1+p1,a1+2p2....,x<=a1+p2p1

过不了的情况:k=2,两个数都在1e9左右

清北澡堂 Day2 上午 一些比较重要的关于数论的知识整理的更多相关文章

  1. 清北澡堂 Day2 下午 一些比较重要的数论知识整理

    1.欧拉定理 设x1,x2,.....,xk,k=φ(n)为1~n中k个与n互质的数 结论一:axi与axj不同余 结论二:gcd(axi,n)=1 结论三:x1,x2,...,xk和ax1,ax2, ...

  2. 清北澡堂 Day 3 上午

    1.数论函数的卷积公式 (ƒ*g)(n)=Σd|nƒ(d)×g(n/d) 已知f*[1~n],g[1~n] 怎么求(f*g)[1~n]? 一个个求复杂度O(n根号n) 如何加速? 考虑更换枚举顺序(这 ...

  3. 清明培训 清北学堂 DAY2

    今天是钟皓曦老师的讲授~~ 总结了一下今天的内容: 数论!!! 1.整除性 2.质数 定义: 性质:  3.整数分解定理——算数基本定理 证明: 存在性: 设N是最小不满足唯一分解定理的整数 (1)  ...

  4. 清北学堂Day2

    算数基本定理: 1.整数及其相关 2.唯一分解定理 对于任意的大于1的正整数N,N一定能够分解成有限个质数的乘积,即 其中P1<P2<...<Pk,a1,a2,...,ak>= ...

  5. 五一培训 清北学堂 DAY2

    今天还是冯哲老师的讲授~~ 今日内容:简单数据结构(没看出来简单qaq) 1.搜索二叉树 前置技能 一道入门题在初学OI的时候,总会遇到这么一道题.给出N次操作,每次加入一个数,或者询问当前所有数的最 ...

  6. 清北Day4

    版权声明:如需转载请标明出处,未得到本人许可请勿转载. 今天就可以看到传说中的 数据结构 嘿嘿嘿嘿 都有什么呢 链表 队列 栈 st表 hash 线段树 树链剖分 一.栈: 放出来这个看烂了的图 值得 ...

  7. 济南清北学堂游记 Day 1.

    快住手!这根本不是暴力! 刷了一整天的题就是了..上午三道题的画风还算挺正常,估计是第一天,给点水题做做算了.. rqy大佬AK了上午的比赛! 当时我t2暴力写挂,还以为需要用啥奇怪的算法,后来发现, ...

  8. 清北学堂2017NOIP冬令营入学测试P4745 B’s problem(b)

    清北学堂2017NOIP冬令营入学测试 P4745 B's problem(b) 时间: 1000ms / 空间: 655360KiB / Java类名: Main 背景 冬令营入学测试 描述 题目描 ...

  9. 清北学堂2017NOIP冬令营入学测试 P4744 A’s problem(a)

    清北学堂2017NOIP冬令营入学测试 P4744 A's problem(a) 时间: 1000ms / 空间: 655360KiB / Java类名: Main 背景 冬令营入学测试题,每三天结算 ...

随机推荐

  1. Java之文本文件的创建和读取(含IO流操作)

    工具类:对文件的读取,创建.直接复制拿来用! package cn.zyzpp.util; import java.io.BufferedReader; import java.io.Buffered ...

  2. 深入理解消息中间件技术之RabbitMQ服务

    什么叫消息队列? 消息(Message)是指在应用间传送的数据.消息可以非常简单,比如只包含文本字符串,也可以更复杂,可能包含嵌入对象. 消息队列(Message Queue)是一种应用间的通信方式, ...

  3. UnderWater+SDN论文之二

    ---- Software-defined underwater acoustic networking platform and its applications source: Ad Hoc Ne ...

  4. ImportError: DLL load failed: 找不到指定的模块。

    这里用的anacoda,报错是找不到DLL,可能是该DLL的环境变量没配置,配置系统环境变量: 重启一下pycharm,OK.

  5. Graph Without Long Directed Paths CodeForces - 1144F (dfs染色)

    You are given a connected undirected graph consisting of nn vertices and mm edges. There are no self ...

  6. Summer sell-off CodeForces - 810B (排序后贪心)

    Summer holidays! Someone is going on trips, someone is visiting grandparents, but someone is trying ...

  7. Navicat还原出现Finished - Stopped before completion的问题

    查看数据库中最大的单个文件容量 SHOW VARIABLES LIKE '%max_allowed_packet%';   设置最大单个文件容量为10M,单次有效(新建查询---运行) SET GLO ...

  8. 如何恢复Eclipse中被误删除的文件

    在使用Eclipse时,可能会不小心误删除一些文件,没关系,Eclipse有个非常强大的功能,能让这些误删除的文件恢复回来,下面就来介绍一下. 工具/原料   Eclipse Kepler 方法/步骤 ...

  9. Python_生产者消费者模型、管道、数据共享、进程池

    1.生产者消费者模型 生产者 —— 生产数据的人 消费者 —— 消费数据的人 生产者消费者模型:供销数据不平衡的现象. import time import random from multiproc ...

  10. 使用junit测试

    package creeper; import java.util.Scanner; public class size { private static int intercePosition = ...