codeforces553C Love Triangles
题目链接:codeforces553C Love Triangles
我们来看一下对于一个合法三角形可能出现的边
我们发现,在确定了两边之后,第三条边是什么也就随之确定了
我们用\(1\)表示\(love\),用\(0\)表示\(hate\)
那么\(111-->11,1\)
\(100-->\ 00,1/10,1\)
我们发现,当两条边的数字相同时,第三条边的数字为\(1\),否则为\(0\)
很明显这个条件在反过来时也是成立的
这有什么作用?
我们推广一下:假设我们已知一个点\(u\)它连出去的所有边,那么我们能得到什么?
我们能得到的是这个图的情况,比如两条边\((u,v),(u,w)\),由它们是否相同可以推出\((v,u)\)的情况
所以我们考虑去推出与一个点相连的所有边的情况,我们取这个点为1
那么在一个联通块内的所有点与1点的边的关系是有一个相对关系的,即在确定了一条边的颜色后,我们可以确定整个联通块的边的颜色
所以对这个联通块我们有2种染色方式
再在减去1号点所在的联通块的颜色应该是已知的,所以最后的答案就是2的联通块数-1的乘方
在找联通块的dfs中顺便判掉是否有解
#include<iostream>
#include<string>
#include<string.h>
#include<stdio.h>
#include<algorithm>
#include<math.h>
#include<vector>
#include<queue>
#include<map>
using namespace std;
const int maxd=1e9+7;
struct node{
int to,nxt,cost;
}sq[200200];
int n,m,all=0,head[100100],tag[100100];
bool no_so=0;
int read()
{
int x=0,f=1;char ch=getchar();
while ((ch<'0') || (ch>'9')) {if (ch=='-') f=-1;ch=getchar();}
while ((ch>='0') && (ch<='9')) {x=x*10+(ch-'0');ch=getchar();}
return x*f;
}
void add(int u,int v,int w)
{
all++;sq[all].to=v;sq[all].nxt=head[u];sq[all].cost=w;head[u]=all;
}
void dfs(int u)
{
int i;
for (i=head[u];i;i=sq[i].nxt)
{
int v=sq[i].to,w=sq[i].cost;
if (tag[v]==-1)
{
if (w==1) tag[v]=tag[u];else tag[v]=1-tag[u];
dfs(v);
}
else
{
if ((w==1) && (tag[v]!=tag[u])) {no_so=1;return;}
else if ((w==0) && (tag[v]==tag[u])) {no_so=1;return;}
}
}
}
int main()
{
n=read();m=read();int i;
for (i=1;i<=m;i++)
{
int u=read(),v=read(),w=read();
add(u,v,w);add(v,u,w);
}
memset(tag,-1,sizeof(tag));int cnt=-1;
for (i=1;i<=n;i++)
{
if (tag[i]==-1)
{
tag[i]=0;
dfs(i);
if (no_so) {printf("0");return 0;}
else cnt++;
}
}
long long ans=1;
for (i=1;i<=cnt;i++) ans=(ans*2)%maxd;
printf("%I64d",ans);
return 0;
}
codeforces553C Love Triangles的更多相关文章
- Count the number of possible triangles
From: http://www.geeksforgeeks.org/find-number-of-triangles-possible/ Given an unsorted array of pos ...
- [ACM_搜索] Triangles(POJ1471,简单搜索,注意细节)
Description It is always very nice to have little brothers or sisters. You can tease them, lock them ...
- acdream.Triangles(数学推导)
Triangles Time Limit:1000MS Memory Limit:64000KB 64bit IO Format:%lld & %llu Submit Stat ...
- UVA 12651 Triangles
You will be given N points on a circle. You must write a program to determine how many distinctequil ...
- Codeforces Gym 100015F Fighting for Triangles 状压DP
Fighting for Triangles 题目连接: http://codeforces.com/gym/100015/attachments Description Andy and Ralph ...
- Codeforces Round #309 (Div. 1) C. Love Triangles dfs
C. Love Triangles Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/553/pro ...
- Codeforces Round #308 (Div. 2) D. Vanya and Triangles 水题
D. Vanya and Triangles Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/55 ...
- Project Euler 94:Almost equilateral triangles 几乎等边的三角形
Almost equilateral triangles It is easily proved that no equilateral triangle exists with integral l ...
- Project Euler 91:Right triangles with integer coordinates 格点直角三角形
Right triangles with integer coordinates The points P (x1, y1) and Q (x2, y2) are plotted at integer ...
随机推荐
- koa-router
为了处理URL,我们需要引入koa-router这个middleware,让它负责处理URL映射. 我们把上一节的hello-koa工程复制一份,重命名为url-koa. 先在package.json ...
- 搜狐畅游一面(c++)
上来是个小姐姐,有点懵.. 1. 介绍 2. 项目 3. 实习 4. 用的协议 tcp和udp的协议 5. select 和epoll(忘了) 6. 数据库的隔离级别, 死锁, 怎么避免死锁 ...
- iOS开发造轮子 | 通用占位图
https://www.jianshu.com/p/beca3ac24031 实际运用场景: 没网时的提示view,tableView或collectionView没内容时的展示view,以及其它特殊 ...
- 【Python3练习题 002】企业发放的奖金根据利润提成
# [Python练习题 002]企业发放的奖金根据利润提成.# 利润(I)低于或等于10万元时,奖金可提10%:利润高于10万元,低于20万元时,低于10万元的部分按10%提成,高于10万元的部分, ...
- awr format
AWR-Format工具 在Chrome高版本中配置使用AWR-Format for Chrome插件
- http1.0 1.1 与2.0
长连接 HTTP 1.0需要使用keep-alive参数来告知服务器端要建立一个长连接,而HTTP1.1默认支持长连接. HTTP是基于TCP/IP协议的,创建一个TCP连接是需要经过三次握手的,有一 ...
- redis4.X
tar -zxvf ****cd /redismakecd /srcmake install vi redis.confdaemonize yes mkdir /usr/local/redis/bin ...
- Centso7 简单优化(阿里云服务器)
##.下载常用包 # yum -y install wget net-tools screen lsof tcpdump nc mtr openssl-devel vim bash-completio ...
- 安装使用阿里云的yum源
CentOS 1.备份(备份本地Yum源) mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS-Base.repo.bak 2.下 ...
- Java ME之Android开发从入门到精通
1. 搭建Android开发环境 方式一:使用ADT插件安装 ADT插件的下载与安装,ADT插件获取网址:http://www.androiddevtools.cn/ 下载好的ADT插件如图所示: 在 ...