洛谷题目传送门

神仙思维题还是要写点东西才好。

建立数学模型

这种很抽象的东西没有式子描述一下显然是下不了手的。

因为任何位置都以\(k\)为周期,所以我们只用关心一个周期,也就是以下数都在膜\(k\)意义下。

设\(a_i\)表示\(i\)号区间长度;

对于上行列车(\(0\rightarrow n\))设\(p_0\)表示出发时刻,\(p_i(i\ge1)\)表示在\(i\)站停靠时间;

对于下行列车(\(0\leftarrow n\))设\(-q_0\)表示到站时刻,\(q_i(i\ge1)\)表示在\(i\)站停靠时间;

(转化成\(-q_0\)是为了后面表示方便)

用大写字母\(A,P,Q\)分别表示它们的前缀和。

如果某区间\(b_i=1\),则两列车的行驶时间区间不交,即

\[(P_{i-1}+A_{i-1},P_{i-1}+A_i)\cap(-Q_{i-1}-A_i,-Q_{i-1}-A_{i-1})=\emptyset
\]

区间不交即端点不被包含,可以列出不等式(被取模了所以看着比较奇怪)

\[\begin{cases}P_{i-1}+A_i\le-Q_{i-1}-A_i\\P_{i-1}+A_{i-1}\ge-Q_{i-1}-A_{i-1}\end{cases}
\]

记\(x=P_{i-1}+Q_{i-1}\),移项,解得\(x\in[-2A_{i-1},-2A_i]\)

因为\(P,Q\)是递增的,所以我们的问题变成了:

有若干个限制区间\([l_i,r_i]\),你手头有一个数\(x\),初值任选,每次可以加一个非负整数使它落在区间内,求最少总共加多少能满足限制。

优化求解

考虑这样一个贪心的决策过程:

假设我们知道当前的\(x\),我们需要统计它最少总共被加了多少。我们看上一个限制区间。

如果\(x\)被上一个区间包含,那么我们看上上个区间。

如果\(x\)没有被上一个区间包含,则\(x\)从区间的右端点加过来的代价最小,我们继续对上上个区间的右端点进行决策。

发现我们决策的中间状态只和区间右端点有关,所以我们设\(f_i\)表示决策到第\(i\)个区间时,\(x=r_i\)的最小代价。

我们对于每个值维护最后一个没有包含这个值的区间编号,每次取出\(r_i\)对应的编号(记为\(j\)),用\(f_j+r_i-r_j\)更新\(f_i\),并将\([r_i+1,l_i-1]\)的编号全部设为\(i\)。

最后把所有的\(l_i\)丢进去查一下取个\(\min\)加上\(2A_n\)就是答案。

因为是区间设置所以可以珂朵莉树维护,不用离散化,因为随机数据的编号段数不会太大所以平均情况下跑得比线段树还快。

特判:如果\(2a_i>k\)那么puts("-1")

#include<bits/stdc++.h>
#define LL long long
#define R register int
#define G if(++ip==ie)if(fread(ip=buf,1,SZ,stdin))
using namespace std;
const int SZ=1<<19,N=1e5+9;
char buf[SZ],*ie=buf+SZ,*ip=ie-1;
inline int in(){
G;while(*ip<'-')G;
R x=*ip&15;G;
while(*ip>'-'){x*=10;x+=*ip&15;G;}
return x;
}
int k,l[N],r[N];LL f[N];bool b[N];
struct Node{
int r;mutable int v;
inline Node(R a,R b=0):r(a),v(b){}
inline bool operator<(const Node&a)const{return r<a.r;}
};
typedef set<Node>::iterator IT;
set<Node>s;
inline IT Split(R p){
IT i=s.lower_bound(Node(p));
return i->r!=p?s.insert(Node(p,i->v)).first:i;
}
inline void Set(R l,R r,R v){
if(l>r)return;
IT il=Split(l-1),ir=Split(r);
ir->v=v;s.erase(++il,ir);
}
inline LL Calc(R p){
R j=s.lower_bound(Node(p))->v;
return j?f[j]+(p-r[j]+k)%k:0;
}
int main(){
R n=in();LL k=::k=in(),a=0,a1=0,ans=1e18;
s.insert(Node(-1));
s.insert(Node(k-1));
for(R i=1;i<=n;++i){
a1=a;a+=in();
if(!(b[i]=in()&1))continue;
if(2*(a-a1)>k)return puts("-1"),0;
l[i]=(-2*a1%k+k)%k;r[i]=(-2*a%k+k)%k;
f[i]=Calc(r[i]);
if(l[i]>r[i])Set(r[i]+1,l[i]-1,i);
else Set(0,l[i]-1,i),Set(r[i]+1,k-1,i);
}
for(R i=1;i<=n;++i)
if(b[i])ans=min(ans,Calc(l[i]));
cout<<ans+2*a<<endl;
return 0;
}

洛谷AT2342 Train Service Planning(思维,动态规划,珂朵莉树)的更多相关文章

  1. 洛谷P2787 语文1(chin1)- 理理思维(珂朵莉树)

    传送门 一看到区间推倒……推平操作就想到珂朵莉树 区间推平直接assign,查询暴力,排序的话开一个桶统计,然后一个字母一个字母加就好了 开桶统计的时候忘了保存原来的左指针然后挂了233 //mina ...

  2. 洛谷P4344 [SHOI2015]脑洞治疗仪(珂朵莉树)

    传送门 看到区间推倒……推平就想到珂朵莉树 挖脑洞直接assign,填坑先数一遍再assign再暴力填,数数的话暴力数 //minamoto #include<iostream> #inc ...

  3. 洛谷P2082 区间覆盖(加强版)(珂朵莉树)

    传送门 虽然是黄题而且还是一波离散就能解决的东西 然而珂朵莉树还是很好用 相当于一开始区间全为0,然后每一次区间赋值,问最后总权值 珂朵莉树搞一搞就好了 //minamoto #include< ...

  4. 洛谷P2572 [SCOI2010]序列操作(珂朵莉树)

    传送门 珂朵莉树是个吼东西啊 这题线段树代码4k起步……珂朵莉树只要2k…… 虽然因为这题数据不随机所以珂朵莉树的复杂度实际上是错的…… 然而能过就行对不对…… (不过要是到时候noip我还真不敢打… ...

  5. 洛谷$P2572\ [SCOI2010]$ 序列操作 线段树/珂朵莉树

    正解:线段树/珂朵莉树 解题报告: 传送门$w$ 本来是想写线段树的,,,然后神仙$tt$跟我港可以用珂朵莉所以决定顺便学下珂朵莉趴$QwQ$ 还是先写线段树做法$QwQ$? 操作一二三四都很$eas ...

  6. 洛谷 P5350 序列 珂朵莉树

    题目描述 分析 操作一.二.三为珂朵莉树的基本操作,操作四.五.六稍作转化即可 不会珂朵莉树请移步至这里 求和操作 把每一段区间分别取出,暴力相加 ll qh(ll l,ll r){ it2=Spli ...

  7. [Agc011F] Train Service Planning

    [Agc011F] Train Service Planning 题目大意: 有n+1个车站,n条轨道,第i条轨道联通i-1和i车站,通过它要花a[i]时间,这条轨道有b[i]=1或2条车道,也就是说 ...

  8. 洛谷P4630 [APIO2018] Duathlon 铁人两项 【圆方树】

    题目链接 洛谷P4630 题解 看了一下部分分,觉得树的部分很可做,就相当于求一个点对路径长之和的东西,考虑一下能不能转化到一般图来? 一般图要转为树,就使用圆方树呗 思考一下发现,两点之间经过的点双 ...

  9. [洛谷P3987]我永远喜欢珂朵莉~

    [洛谷P3987]我永远喜欢珂朵莉~ 题目大意: 给你\(n(n\le10^5)\)个数\(A_{1\sim n}(A_i\le5\times10^5)\),\(m(m\le5\times10^5)\ ...

随机推荐

  1. 软件扒网站? 爬虫? F12查看源码? 查看网页源代码?浏览器sources? 区别和联系!

    1.软件扒网站: 利用各类扒站网站,如仿站小工具8.0,可以按照规则将网站的未经浏览器简析的前端代码扒下来,并整理成css,js,html等文件夹,很方便.(当然看不到ajax等相关代码) 备注:如果 ...

  2. 使用faker去构造一个User-Agent

    faker可以仿造各种各样的信息,可以使用faker去构造一个User-Agent from faker import Factory f = Factory.create() 'User-Agent ...

  3. spring实例入门

    首先是bean文件: package onlyfun.caterpillar; public class HelloBean {    private String helloWord = " ...

  4. Git远程分支的回退

    下午发现上午提交的一个版本有问题,在回退本地分支后,发现还必须要回退远程分支的版本.网上查找到的资料如下: #新建old_master分支做备份 git branch old_master #push ...

  5. Django组件之认证系统

      Django自带的用户认证 我们在开发一个网站的时候,无可避免的需要设计实现网站的用户系统.此时我们需要实现包括用户注册.用户登录.用户认证.注销.修改密码等功能,这还真是个麻烦的事情呢. Dja ...

  6. Rime 小狼毫 注意事项

    https://rime.im/https://github.com/rime/weasel/pulse 打不出中文可能是,没有五笔需要的文件: wubi_pinyin.schema.yamlCtrl ...

  7. 深入解读Promise对象

    promise对象初印象: promise对象是异步编程的一种解决方案,传统的方法有回调函数和事件,promise对象是一个容器,保存着未来才会结束的事件的结果 promise对象有两个特点: 1.p ...

  8. 使用docker化的nginx 反向代理 docker化的GSCloud 的方法

    1. 首先将nginx 的image pull 下来. docker pull nginx 2. 将最近的可用的 参数文件 复制过来当一个目录 mkdir /nginx ssh root@linuxs ...

  9. [官网]Red Hat Enterprise Linux Release Dates

    Red Hat Enterprise Linux Release Dates https://access.redhat.com/articles/3078 The tables below list ...

  10. AngularJS集合数据遍历显示

    AngularJS集合数据遍历显示 <!DOCTYPE html> <html> <head> <meta charset="UTF-8" ...