题目背景

原 A-B数对(增强版)参见P1102

题目描述

克里特岛以野人群居而著称。岛上有排列成环行的M个山洞。这些山洞顺时针编号为1,2,…,M。岛上住着N个野人,一开始依次住在山洞C1,C2,…,CN中,以后每年,第i个野人会沿顺时针向前走Pi个洞住下来。

每个野人i有一个寿命值Li,即生存的年数。

下面四幅图描述了一个有6个山洞,住有三个野人的岛上前四年的情况。三个野人初始的洞穴编号依次为1,2,3;每年要走过的洞穴数依次为3,7,2;寿命值依次为4,3,1。

奇怪的是,虽然野人有很多,但没有任何两个野人在有生之年处在同一个山洞中,使得小岛一直保持和平与宁静,这让科学家们很是惊奇。他们想知道,至少有多少个山洞,才能维持岛上的和平呢?

输入输出格式

输入格式:

第1行为一个整数N(1<=N<=15),即野人的数目。

第2行到第N+1每行为三个整数Ci, Pi, Li (1<=Ci,Pi<=100, 0<=Li<=106 ),表示每个野人所住的初始洞穴编号,每年走过的洞穴数及寿命值。

输出格式:

仅包含一个数M,即最少可能的山洞数。输入数据保证有解,且M不大于10^6。

输入输出样例

输入样例#1: 复制

3
1 3 4
2 7 3
3 2 1
输出样例#1: 复制

6

说明

对于50% 的数据:N 的范围是[1…1,000]。

对于另外50% 的数据:N 的范围是[1…100,000]。

对于100% 的数据:C 的范围是[1…1,000,000,000],N 个整数中每个数的范围是:[0…1,000,000,000]。

我居然切了一道紫题??!!好开心qwq

设第$i$个人的寿命为$x_i$,每次走$y_i$,刚开始在$a$,

若洞穴数为$b$,那么我们需要找到最小的$b$满足对于任意的两个野人$i,j$

$a_i+y_i * T_i \not \equiv a_j + y_j + T_j \pmod b$,$T$表示第几年。

然后这个是个标准的欧几里得式子

枚举一个$b$,判断就好了

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int MAXN = , B = ;
inline int read() {
char c = getchar(); int x = , f = ;
while(c < '' || c > '') {if(c == '-') f = -; c = getchar();}
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * f;
}
int N;
struct Node {
int bg, step, life;
bool operator < (const Node &rhs) const {
return this -> step < rhs.step;
}
}a[MAXN];
int x, y;
int exgcd(int a, int b, int &x, int &y) {
if(b == ) {
x = , y = ; return a;
}
int r = exgcd(b, a % b, x, y);
int tmp = x; x = y, y = tmp - (a / b) * y;
return r;
}
bool check(int X) {
for(int i = ; i <= N; i++) {
for(int j = ; j <= i - ; j++) {
int B = X;
int A = a[i].step - a[j].step, C = a[j].bg - a[i].bg, r = __gcd(A, B);
if(C % r != ) continue;
A = A / r; B = B / r; C = C / r;
exgcd(A, B, x, y);
x = (x * C) % B;
while(x < ) x += B;
if(x <= a[i].life && x <= a[j].life) return ;
}
}
return ;
}
main() {
#ifdef WIN32
freopen("a.in", "r", stdin);
#endif
N = read();
int fuck = ;
for(int i = ; i <= N; i++)
a[i].bg = read(), a[i].step = read(), a[i].life = read(),
fuck = max(fuck, a[i].bg);
sort(a + , a + N + );
for(int i = fuck; i <= 1e6; i++)//一定要从最大值开始,,好坑。。
if(check(i))
{printf("%d\n", i); exit();}
}

洛谷P2421 [NOI2002]荒岛野人(扩展欧几里得)的更多相关文章

  1. P2421 [NOI2002]荒岛野人 扩展欧几里得 枚举

    Code: #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ...

  2. 【题解】洛谷P2421[NOI2002]荒岛野人 (Exgcd)

    洛谷P2421:https://www.luogu.org/problemnew/show/P2421 思路 从洞的最大编号开始增大枚举答案 对于每一个枚举的ans要满足Ci+k*Pi≡Cj+k*Pj ...

  3. JZYZOJ1372 [noi2002]荒岛野人 扩展欧几里得

    http://172.20.6.3/Problem_Show.asp?id=1372 想法其实很好想,但是我扩展欧几里得还是用得不熟练,几乎是硬套模板,大概因为今天一个下午状态都不大好.扩展欧几里得算 ...

  4. 洛谷 P2421 [NOI2002]荒岛野人

    题目描述 又是一道扩欧的题. 要求一个最小的m使得 Ci+Pi*x≡Cj+Pj*x mod m(i!=j) 在x在第i个人和第j个人的有生之年无解. 也就是 (Pi-Pj)*x+m*y=Cj-Ci 在 ...

  5. bzoj1407,洛谷2421 NOI2002荒岛野人

    题目大意: 克里特岛以野人群居而著称.岛上有排列成环行的M个山洞.这些山洞顺时针编号为1,2,-,M.岛上住着N个野人,一开始依次住在山洞C1,C2,-,CN中,以后每年,第i个野人会沿顺时针向前走P ...

  6. [noi2002]荒岛野人 拓展欧几里得

    克里特岛以野人群居而著称.岛上有排列成环行的M个山洞.这些山洞顺时针编号为1,2,…,M.岛上住着N个野人,一开始依次住在山洞C1,C2,…,CN中,以后每年,第i个野人会沿顺时针向前走Pi个洞住下来 ...

  7. P1516 青蛙的约会和P2421 [NOI2002]荒岛野人

    洛谷 P1516 青蛙的约会 . 算是手推了一次数论题,以前做的都是看题解,虽然这题很水而且还交了5次才过... 求解方程\(x+am\equiv y+an \pmod l\)中,\(a\)的最小整数 ...

  8. bzoj1407 / P2421 [NOI2002]荒岛野人(exgcd)

    P2421 [NOI2002]荒岛野人 洞穴数不超过1e6 ---> 枚举 判断每个野人两两之间是否发生冲突:exgcd 假设有$m$个洞穴,某两人(设为1,2)在$t$时刻发生冲突 那么我们可 ...

  9. Luogu P2421 [NOI2002]荒岛野人

    最近上课时提到的一道扩欧水题.还是很可做的. 我们首先注意到,如果一个数\(s\)是符合要求的,那么那些比它大(or 小)的数不一定符合要求. 因此说,答案没有单调性,因此不能二分. 然后题目中也提到 ...

随机推荐

  1. SpringBoot 项目打包后运行报 org.apache.ibatis.binding.BindingException

    今天把本地的一个SpringBoot项目打包扔到Linux服务器上,启动执行,接口一访问就报错,但是在本地Eclipse中启动执行不报错,错误如下: org.apache.ibatis.binding ...

  2. linux下postgres的安装

    软件包的下载 在浏览器中访问https://www.enterprisedb.com/download-postgresql-binaries 然后选择适合自己的版本,我选择的是linux64位下的1 ...

  3. Kali学习笔记35:使用VBScript、PowerShell、DEBUG传输文件

    其实VBScript只是一个工具 本质是开启http服务提供下载的 首先我们开启http服务:阿帕奇 然后给上传一个文件做演示: 接下来就是编写VBScript: 这些内容全部输入完成之后: 传输 早 ...

  4. LabVIEW(三):定时与触发

    一.定时 多功能数据采集板卡的时钟特性,举例为M系列定时引擎:板卡上控制采集和波形发生的三个时钟:AI Sample Clock.AI Convert Clock.AO Sample Clock.所有 ...

  5. 屌炸天,Oracle 发布了一个全栈虚拟机 GraalVM,支持 Python!

    前阵子,Oracle 发布了一个黑科技 "GraalVM",号称是一个全新的通用全栈虚拟机,并具有高性能.跨语言交互等逆天特性,真有这么神奇? GraalVM 简介 GraalVM ...

  6. Spark面试题

    RDD怎么理解? RDD 是 Spark 的灵魂,也称为弹性分布式数据集.一个 RDD 代表一个可以被分区的只读数据集.RDD 内部可以有许多分区(partitions),每个分区又拥有大量的记录(r ...

  7. Mac OS Eclipse 调试快捷键不好使(失效)的情况

    Eclipse调试使用的F5  F6  F8一直都好用,结果一次调试后忽然不好使. 问题原因,尚未知晓. 解决办法,重启机器.

  8. odoo开发笔记 -- many2one搜索更多增加默认过滤条件

    没加过滤条件的时候,效果如下,点击下拉框,搜索更多出现所有模型下的模板: 改进方法(增加默认过滤条件,显示指定模型下的内容): class IrCloudReport(models.Model): _ ...

  9. [Maven]Maven如何得到单独的单元测试报告

    ----------------------------------------------------------------- 原创博文,如需转载请通知作者并注明出处! 博主:疲惫的豆豆 链接:h ...

  10. ajax实现文档导出及下载

    做导出一直遇到个问题就是不能用ajax实现一步导出文档,即导出加下载.今天突然想到可以分开来做就上网搜了下,发现一篇比较不错的文章(http://www.cnblogs.com/zj0208/p/59 ...