题解:

网上还有一种spfa+深度限制的算法

https://www.cnblogs.com/BearChild/p/6624302.html

是不加队列优化的spfa,我觉得复杂度上限是bellman-ford nm的,另外从每个点跑加上二分答案所以是n^2mlogn的

但实测的确是挺快的,可能是深度限制的原因

这题可以用倍增floyd

比较慢的就是二分+倍增floyd是n^3log^2n的

可以直接用找lca的思想,做到n^3logn

不太懂floyd的理论

两个矩阵算起来的时候要用新矩阵去更新的

c[i][j]=min(c[i][j],a[i][k]+b[k][j])这样做

然后卡了一下常(指针)

不过在bz上效果好像不是很明显

自己测试还是很明显得

不过windos下数组极慢,要用5.5s

linux下只用了2s,指针的win和linux下几乎相同都是1s

代码:

#include <bits/stdc++.h>
using namespace std;
#define rint register int
#define IL inline
#define rep(i,h,t) for (rint i=h;i<=t;i++)
#define dep(i,t,h) for (rint i=t;i>=h;i--)
const int INF=1e9;
const int N=;
char ss[<<],*A=ss,*B=ss;
IL char gc()
{
return (A==B&&(B=(A=ss)+fread(ss,,<<,stdin),A==B)?EOF:*A++);
}
template<class T>void read(T &x)
{
rint f=,c; while (c=gc(),c<||c>) if (c=='-') f=-; x=c^;
while (c=gc(),<c&&c<) x=(x<<)+(x<<)+(c^); x*=f;
}
int f[][N][N],t[N][N],t1[N][N],n,m;
int main()
{
freopen("1.in","r",stdin);
freopen("1.out","w",stdout);
read(n); read(m);
rep(k,,)
rep(i,,n)
rep(j,,n)
if (i!=j)
f[k][i][j]=INF;
rep(i,,m)
{
int x,y,z;
read(x); read(y); read(z);
if (f[][x][y]>z) f[][x][y]=z;
}
rep(i,,)
{
rep(i1,,n)
rep(i2,,n)
{
rint tmp=f[i-][i2][i1];
rint *p1=f[i-][i1];
rep(i3,,n)
{
rint *p3=f[i][i2];
rint p4=p3[i3];
rint p2=tmp+p1[i3];
if (p4>p2) p3[i3]=p2;
}
}
}
rep(i,,n)
rep(j,,n)
t[i][j]=f[][i][j];
int ans=;
dep(i,,)
{
rep(i1,,n)
rep(i2,,n)
t1[i1][i2]=INF;
rep(i1,,n)
{
rint (*g)=f[i][i1];
rep(i2,,n)
{
rint tmp=t[i2][i1];
rint *p3=t1[i2];
rep(i3,,n)
{
rint p1=p3[i3];
rint p2=tmp+g[i3];
if (p1>p2) p3[i3]=p2;
}
}
}
bool tt=;
rep(j,,n)
if (t1[j][j]<) tt=;
if (!tt)
{
ans+=<<i;
memcpy(t,t1,sizeof(t1));
}
}
if (ans+==) cout<<<<endl;
else cout<<ans+<<endl;
return ;
}

bzoj4773: 负环的更多相关文章

  1. bzoj4773: 负环(倍增floyd)

    浴谷夏令营例题...讲师讲的很清楚,没看题解代码就自己敲出来了 f[l][i][j]表示i到j走2^l条边的最短距离,显然有f[l][i][j]=min(f[l][i][j],f[l-1][i][k] ...

  2. bzoj4773 负环 倍增+矩阵

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4773 题解 最小的负环的长度,等价于最小的 \(len\) 使得存在一条从点 \(i\) 到自 ...

  3. 2018.11.09 bzoj4773: 负环(倍增+floyd)

    传送门 跟上一道题差不多. 考虑如果环上点的个数跟最短路长度有单调性那么可以直接上倍增+floyd. 然而并没有什么单调性. 于是我们最开始给每个点初始化一个长度为0的自环,于是就有单调性了. 代码: ...

  4. BZOJ4773 负环(floyd+倍增)

    倍增floyd求出经过<=2k条边时两点间最短路,一个点到自身的最短路就是包含该点的最小环.然后倍增找答案即可.注意初始时到自身的最短路设为0,这样求出的最短路就是经过<=2k条边的而不是 ...

  5. BZOJ4773: 负环(倍增Floyd)

    题意 题目链接 Sol 倍增Floyd,妙妙喵 一个很显然的思路(然而我想不到是用\(f[k][i][j]\)表示从\(i\)号点出发,走\(k\)步到\(j\)的最小值 但是这样复杂度是\(O(n^ ...

  6. 【BZOJ4773】负环 倍增Floyd

    [BZOJ4773]负环 Description 在忘记考虑负环之后,黎瑟的算法又出错了.对于边带权的有向图 G = (V, E),请找出一个点数最小的环,使得 环上的边权和为负数.保证图中不包含重边 ...

  7. 【BZOJ4773】负环 [SPFA][二分]

    负环 Time Limit: 100 Sec  Memory Limit: 256 MB[Submit][Status][Discuss] Description 在忘记考虑负环之后,黎瑟的算法又出错 ...

  8. UVA11090 Going in Cycle!! [spfa负环]

    https://vjudge.net/problem/UVA-11090 平均权值最小的回路 为后面的做个铺垫 二分最小值,每条边权减去他,有负环说明有的回路平均权值小于他 spfa求负环的时候可以先 ...

  9. 【洛谷P3385】模板-负环

    这道题普通的bfs spfa或者ballen ford会T 所以我们使用dfs spfa 原因在于,bfs sfpa中每个节点的入队次数不定,退出操作不及时,而dfs则不会 既然,我们需要找负环,那么 ...

随机推荐

  1. boost.log在项目中应用

    //头文件#pragma once #include <string> #include <boost/log/trivial.hpp> using std::string; ...

  2. 用Cordova打包Vue-vux项目

    技术搭建:vue + vux 首先推荐阅读这篇文章,写的已经很详细了:https://www.jianshu.com/p/25d797b983cd 此处记录下我按照这篇文章打包的时候报的一些错误,方便 ...

  3. recv() failed (104: Connection reset by peer) while reading response header from upstream

    2017年12月1日10:18:34 情景描述: 浏览器执行了一会儿, 报500错误 运行环境:  nginx + php-fpm nginx日志:  recv() failed (104: Conn ...

  4. T-SQL 数值函数

    MS SQL Server数字函数可以应用于数值数据,并返回数值数据. 下面是带有示例的数值函数列表. ABS() 输出给定值的绝对值. 例 以下查询将输出-22的绝对值:22. Select ABS ...

  5. 《python核心编程第二版》课后习题6-12答案

    下午脑子瓦特,想了半天也没有想出算法,刚刚抽风终于实现了,特此记录. ̄□ ̄|| 题目 (a)创建一个名字为 findchr()的函数,findchr()要在字符串 string 中查找字符 char, ...

  6. 图解elasticsearch的_source、_all、store和index

    Elasticsearch中有几个关键属性容易混淆,很多人搞不清楚_source字段里存储的是什么?store属性的true或false和_source字段有什么关系?store属性设置为true和_ ...

  7. swift 实践- 04 -- UIButton

    import UIKit class ViewController: UIViewController { // 按钮的创建 // UIButtonType.system: 前面不带图标, 默认文字为 ...

  8. Confluence 6 Microsoft SQL Server 设置准备

    在开始前,请检查: 请查看 Supported Platforms 页面来获得 Confluence 系统支持的 SQL Server 数据库版本.你需要在安装 Confluence 之前升级你的 O ...

  9. 学习Spring Boot:(一)入门

    微服务 现在微服务越来越火了,Spring Boot热度蹭蹭直升,自学下. 微服务其实是服务化思路的一种最佳实践方向,遵循SOA(面向服务的架构)的思路,各个企业在服务化治理上面的道路已经走得很远了, ...

  10. yolov3 安装训练

    https://blog.csdn.net/helloworld1213800/article/details/79749359 https://blog.csdn.net/lilai619/arti ...