[CQOI2018]九连环
嘟嘟嘟
对于这种找规律的题,我向来是不会的。
通过大佬们的各种打表找规律、神奇dp等方法,我们得到了答案就是\(\lfloor \frac{2 ^ {n + 1}}{3} \rfloor\)。
高精是显然的,但是还得用fft,毕竟这是省选题。
刚开始我一运行就RE,都不让你输入,后来才发现是数组开到1e6太大了(这怎么就大了!?)
其次别忘了高精里面的数都是倒着存的,所以做除法的时候得倒着来,最后再把数组倒过来。
然后高精fft借鉴了一下兔哥的代码,把原来的代码简化了许多。
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const db PI = acos(-1);
const int maxn = 1e5 + 5;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
}
int rev[maxn];
struct Comp
{
db x, y;
In Comp operator + (const Comp& oth)const
{
return (Comp){x + oth.x, y + oth.y};
}
In Comp operator - (const Comp& oth)const
{
return (Comp){x - oth.x, y - oth.y};
}
In Comp operator * (const Comp& oth)const
{
return (Comp){x * oth.x - y * oth.y, x * oth.y + y * oth.x};
}
friend In void swap(Comp& a, Comp& b)
{
swap(a.x, b.x); swap(a.y, b.y);
}
};
In void fft(Comp* a, int len, int flg)
{
for(int i = 0; i < len; ++i) if(i < rev[i]) swap(a[i], a[rev[i]]);
for(int i = 1; i < len; i <<= 1)
{
Comp omg = (Comp){cos(PI / i), sin(PI / i) * flg};
for(int j = 0; j < len; j += (i << 1))
{
Comp o = (Comp){1, 0};
for(int k = 0; k < i; ++k, o = o * omg)
{
Comp tp1 = a[k + j], tp2 = a[k + j + i] * o;
a[k + j] = tp1 + tp2, a[k + j + i] = tp1 - tp2;
}
}
}
}
struct Big
{
int a[maxn], len;
In void init() {Mem(a, 0); len = 0;}
In Big operator * (const Big& oth)const
{
static Comp A[maxn], B[maxn];
int Len = 1, lim = 0;
while(Len < len + oth.len - 1) Len <<= 1, ++lim;
for(int i = 0; i < Len; ++i)
{
A[i] = (Comp){i < len ? a[i] : 0, 0}; //这个很重要
B[i] = (Comp){i < oth.len ? oth.a[i] : 0, 0};
}
for(int i = 0; i < Len; ++i) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (lim - 1));
fft(A, Len, 1); fft(B, Len, 1);
for(int i = 0; i < Len; ++i) A[i] = A[i] * B[i];
fft(A, Len, -1);
static Big ret; ret.init(); ret.len = len + oth.len - 1;
for(int i = 0; i < ret.len; ++i) ret.a[i] = (int)(A[i].x / Len + 0.5);
for(int i = 0; i < ret.len; ++i) ret.a[i + 1] += ret.a[i] / 10, ret.a[i] %= 10;
if(ret.a[ret.len]) ++ret.len; //因为最多只会进一位,所以就不用while啦
return ret;
}
In Big operator / (int x)
{
static Big ret; ret.init();
for(int i = len - 1, tp = 0; i >= 0; --i)
{
tp = tp * 10 + a[i];
if(ret.len) ret.a[ret.len++] = tp / x;
else if(tp >= x) ret.a[ret.len++] = tp / x;
tp %= x;
}
reverse(ret.a, ret.a + ret.len);
return ret;
}
In void out()
{
for(int i = len - 1; i >= 0; --i) write(a[i]);
}
}A, ret;
int main()
{
int T = read();
while(T--)
{
int n = read() + 1;
A.init(); ret.init();
A.len = ret.len = 1;
A.a[0] = 2; ret.a[0] = 1;
for(; n; n >>= 1, A = A * A)
if(n & 1) ret = ret * A;
ret = ret / 3;
ret.out(), enter;
}
return 0;
}
[CQOI2018]九连环的更多相关文章
- 【BZOJ5300】[CQOI2018]九连环 (高精度,FFT)
[BZOJ5300][CQOI2018]九连环 (高精度,FFT) 题面 BZOJ 洛谷 题解 去这里看吧,多么好 #include<iostream> #include<cstdi ...
- CQOI2018 九连环 打表找规律 fft快速傅里叶变换
题面: CQOI2018九连环 分析: 个人认为这道题没有什么价值,纯粹是为了考算法而考算法. 对于小数据我们可以直接爆搜打表,打表出来我们可以观察规律. f[1~10]: 1 2 5 10 21 4 ...
- # BZOJ5300 [CQOI2018]九连环 题解 | 高精度 FFT
今天做了传说中的CQOI六道板子题--有了一种自己很巨的错觉(雾 题面 求n连环的最少步数,n <= 1e5. 题解 首先--我不会玩九连环-- 通过找规律(其实是百度搜索)可知,\(n\)连环 ...
- BZOJ5300:[CQOI2018]九连环——题解
一种打表的方法,适用于知道如何解九连环的人. 我们知道,解九(n)连环必须先解第九(n)环,然后解八(n-1).七(n-2)-- 根据这个我们飞快的写出了一个递推式,设\(f[i]\)为\(i\)连环 ...
- BZOJ5300 [Cqoi2018]九连环 【数学】【FFT】
题目分析: 这道题是数学必修五的原题,做法如下图,书上讲得很详细了. 那么这道题目用快速幂就可以解决了,值得注意的是,分析时间复杂度会发现直接做乘法其实是O(n^2)的,但是有一个1/20左右的常数, ...
- 2019.01.02 bzoj5300: [Cqoi2018]九连环(fft优化高精+快速幂)
传送门 题意不好描述(自己看样例解释) 首先可以推出一个递推式:fn=fn−1+2fn−2+1f_n=f_{n-1}+2f_{n-2}+1fn=fn−1+2fn−2+1 然后可以构造两个等式: ...
- BZOJ5300 [Cqoi2018]九连环 【dp + 高精】
题目链接 BZOJ5300 题解 这题真的是很丧病,,卡高精卡到哭 我们设\(f[i]\)表示卸掉前\(i\)个环需要的步数 那么 \[f[i] = 2*f[i - 2] + f[i - 1] + 1 ...
- P4461 [CQOI2018]九连环
思路:\(DP\) 提交:\(2\)次 错因:高精写挂(窝太菜了) 题解: 观察可知\(f[i]=2*f[i-1]+(n\&1)\) 高精的过程参考了WinXP@luogu的思路: 发现一个问 ...
- yyb省选前的一些计划
突然意识到有一些题目的计划,才可以减少大量查水表或者找题目的时间. 所以我决定这样子处理. 按照这个链接慢慢做. 当然不可能只做省选题了. 需要适时候夹杂一些其他的题目. 比如\(agc/arc/cf ...
随机推荐
- Android Studio 学习(四) 数据库
文件存储 写数据 String data = "Data ti save"; FileOutputStream out =null; BufferedWriter writer = ...
- 理解Promise的三种姿势
译者按: 对于Promise,也许你会用了,却并不理解:也许你理解了,却只可意会不可言传.这篇博客将从3个简单的视角理解Promise,应该对你有所帮助. 原文: Three ways of unde ...
- 枚举getClass、getDeclaringClass区别
枚举getClass.getDeclaringClass区别 1):“不含抽象方法”,所有枚举常量未重写方法,的class getClass与getDeclaringClass方法输出结果相同 cla ...
- elementUI vue 页面加载的时候页面出现了黑字 页面优化处理 按钮弹出框文字
elementUI 页面如果需要加载很多东西的时候, 自己定义的按钮或者弹出框dialog的文字就会显示在页面上, 一闪而过, 因此需要优化一下, elementUI 提供的loading有遮罩层, ...
- python 爬虫爬取内容时, \xa0 、 \u3000 的含义
最近用 scrapy 爬某网站,发现拿到的内容里面含有 \xa0 . \u3000 这样的字符,起初还以为是编码不对,搜了一下才知道是见识太少 233 . \xa0 是不间断空白符 我们通常所用的 ...
- Python 利用Python操作excel表格之openyxl介绍Part2
利用Python操作excel表格之openyxl介绍 by:授客 QQ:1033553122 欢迎加入全国软件测试交流qq群(群号:7156436) ## 绘图 c = LineChart() ...
- listview reclyerview上下拉刷新
x写控件挺麻烦的,因为有很多细节要处理好,列表控件使用太频繁了,网上也各种自定义的方法,一般的listview自定义肯定会联想到加个头部,然后监听事件加动画,其实方式很多种,今天记录的方式是另外一种方 ...
- Android Studio NDK JNI动态注册本地方法
概述 可能大家觉得javah生成的函数名又臭又长,不太好看.这里可以提供另外一种方法来动态注册c++函数,让其根Java中的native方法关联起来. 实现 这里通过JNIEnv的Resisterna ...
- 你不可不知的Java引用类型之——虚引用
定义 虚引用是使用PhantomReference创建的引用,虚引用也称为幽灵引用或者幻影引用,是所有引用类型中最弱的一个.一个对象是否有虚引用的存在,完全不会对其生命周期构成影响,也无法通过虚引用获 ...
- JHipster生成微服务架构的应用栈(四)- 网关微服务示例
本系列文章演示如何用JHipster生成一个微服务架构风格的应用栈. 环境需求:安装好JHipster开发环境的CentOS 7.4(参考这里) 应用栈名称:appstack 认证微服务: uaa 业 ...