「AHOI / HNOI2017」影魔

题目描述

解决这类比较复杂的区间贡献问题关键在于找到计算的对象。

比如这道题,我们计算的对象就是区间中间的最大值。

对于点\(i\),我们找到左边第一个比他大的位置\(L\),以及右边第一个比他大的位置\(R\)。当\(L,R\)同时被询问的区间包含是,\(i\)就会贡献\(p_1\)。当固定左端点为\(L\),右端在\([i+1,R-1]\)之间的时候会贡献\(p_2\);固定右端点\(R\)是同理。还要额外加上\(i,i+1\)贡献的\(p_1\)。

具体实现就可以使用扫描线+树状数组之类的方法。

代码:

#include<bits/stdc++.h>
#define ll long long
#define N 200005 using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;} int n,m;
ll p1,p2;
int a[N];
int L[N],R[N]; void pre() {
int st[N],top;
st[top=0]=0;
for(int i=1;i<=n;i++) {
while(top&&a[st[top]]<a[i]) top--;
L[i]=st[top]+1;
st[++top]=i;
}
st[top=0]=n+1;
for(int i=n;i>=1;i--) {
while(top&&a[st[top]]<a[i]) top--;
R[i]=st[top]-1;
st[++top]=i;
}
} struct query {
int l,r;
int id;
bool operator <(const query &a)const {return l<a.l;}
}q[N];
bool cmpl(const query &a,const query &b) {return a.l<b.l;}
bool cmpL(const query &a,const query &b) {return a.l>b.l;}
bool cmpR(const query &a,const query &b) {return a.r<b.r;} struct Bit {
ll tem[N];
int low(int i) {return i&(-i);}
void add(int v,int f) {for(int i=v;i<=n;i+=low(i)) tem[i]+=f;}
ll ask(int v) {
ll ans=0;
for(int i=v;i;i-=low(i)) ans+=tem[i];
return ans;
}
void Init() {memset(tem,0,sizeof(tem));}
}T,Size;
ll ans[N];
vector<int>del[N]; int main() {
n=Get(),m=Get(),p1=Get(),p2=Get();
for(int i=1;i<=n;i++) a[i]=Get();
pre(); for(int i=1;i<=m;i++) q[i].l=Get(),q[i].r=Get(),q[i].id=i;
for(int i=1;i<=m;i++) {
ans[q[i].id]+=(q[i].r-q[i].l)*p1;
} sort(q+1,q+1+m,cmpl);
for(int i=1;i<=n;i++) del[L[i]-1].push_back(R[i]+1);
for(int i=1;i<=n;i++) T.add(R[i]+1,1); int tag=0;
for(int i=1;i<=m;i++) {
while(tag<q[i].l) {
while(del[tag].size()) {
T.add(del[tag].back(),-1);
del[tag].pop_back();
}
tag++;
}
ans[q[i].id]+=T.ask(q[i].r)*p1;
}
for(int i=1;i<=n+1;i++) del[i].clear();
T.Init(); tag=1;
for(int i=1;i<=n;i++) del[R[i]].push_back(i);
sort(q+1,q+1+m,cmpR);
for(int i=1;i<=m;i++) {
while(tag<=q[i].r) {
T.add(n-L[tag]+2,-tag);
Size.add(n-L[tag]+2,1);
while(del[tag].size()) {
int x=del[tag].back();
T.add(n-L[x]+2,x);
Size.add(n-L[x]+2,-1);
T.add(n-L[x]+2,R[x]-x);
del[tag].pop_back();
}
tag++;
}
ans[q[i].id]+=p2*(Size.ask(n-q[i].l+1)*q[i].r+T.ask(n-q[i].l+1));
} for(int i=0;i<=n+1;i++) del[i].clear();
T.Init(),Size.Init();
sort(q+1,q+1+m,cmpL);
tag=n;
for(int i=1;i<=n;i++) del[L[i]].push_back(i);
for(int i=1;i<=m;i++) {
while(tag>=q[i].l) {
T.add(R[tag]+1,tag);
Size.add(R[tag]+1,1);
while(del[tag].size()) {
int x=del[tag].back();
T.add(R[x]+1,-x);
Size.add(R[x]+1,-1);
T.add(R[x]+1,x-L[x]);
del[tag].pop_back();
}
tag--;
}
ans[q[i].id]+=p2*(T.ask(q[i].r)-Size.ask(q[i].r)*q[i].l);
}
for(int i=1;i<=m;i++) cout<<ans[i]<<"\n"; return 0;
}

「AHOI / HNOI2017」影魔的更多相关文章

  1. LOJ#2019. 「AHOI / HNOI2017」影魔

    题意: 在一个序列中 如果有一个子区间 它有一个端点是区间最大值 另一个端点不是这个区间的次大值 就会有p2的贡献 它两个端点分别是最大值次大值 就会有p1的贡献 我们发现这两个条件有一个重合的部分 ...

  2. loj#2020 「AHOI / HNOI2017」礼物 ntt

    loj#2020 「AHOI / HNOI2017」礼物 链接 bzoj没\(letex\),差评 loj luogu 思路 最小化\(\sum\limits_1^n(a_i-b_i)^2\) 设改变 ...

  3. 「AHOI / HNOI2017」单旋

    「AHOI / HNOI2017」单旋 题目链接 H 国是一个热爱写代码的国家,那里的人们很小去学校学习写各种各样的数据结构.伸展树(splay)是一种数据结构,因为代码好写,功能多,效率高,掌握这种 ...

  4. loj #2023. 「AHOI / HNOI2017」抛硬币

    #2023. 「AHOI / HNOI2017」抛硬币   题目描述 小 A 和小 B 是一对好朋友,他们经常一起愉快的玩耍.最近小 B 沉迷于**师手游,天天刷本,根本无心搞学习.但是已经入坑了几个 ...

  5. loj #2021. 「AHOI / HNOI2017」大佬

    #2021. 「AHOI / HNOI2017」大佬   题目描述 人们总是难免会碰到大佬.他们趾高气昂地谈论凡人不能理解的算法和数据结构,走到任何一个地方,大佬的气场就能让周围的人吓得瑟瑟发抖,不敢 ...

  6. [LOJ 2022]「AHOI / HNOI2017」队长快跑

    [LOJ 2022]「AHOI / HNOI2017」队长快跑 链接 链接 题解 不难看出,除了影响到起点和终点的射线以外,射线的角度没有意义,因为如果一定要从该射线的射出一侧过去,必然会撞到射线 因 ...

  7. 「AHOI / HNOI2017」礼物

    「AHOI / HNOI2017」礼物 题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手环,一个留给自己,一个送给她.每个手环上各有 n 个装饰物,并且每个装饰 ...

  8. loj#2020. 「AHOI / HNOI2017」礼物

    题意:给定xy数组求 \(\sum_{i=0}^{n-1}(x_i+y_{(i+k)\modn}+c)^2\) 题解:先化简可得 \(n*c^2+2*\sum_{i=0}^{n-1}x_i-y_i+\ ...

  9. Loj #2495. 「AHOI / HNOI2018」转盘

    Loj #2495. 「AHOI / HNOI2018」转盘 题目描述 一次小 G 和小 H 原本准备去聚餐,但由于太麻烦了于是题面简化如下: 一个转盘上有摆成一圈的 \(n\) 个物品(编号 \(1 ...

随机推荐

  1. Windows server 2008 R2端口转发

    查询配置了转发的端口 netsh interface portproxy show v4tov4 配置转发(所有ip访问192.168.0.99的1001端口均指向1953端口) netsh inte ...

  2. Java Date类的使用总结

    Date类表示特定的瞬间,精确到毫秒. 有2种方法可以创建Date对象(这里不考虑已过时的构造函数) 1.public Date()——分配 Date 对象并初始化此对象,以表示分配它的时间(精确到毫 ...

  3. Mybatis框架基础支持层——解析器模块(2)

    解析器模块,核心类XPathParser /** * 封装了用于xml解析的类XPath.Document和EntityResolver */ public class XPathParser { / ...

  4. C#设计模式之十五迭代器模式(Iterator Pattern)【行为型】

    一.引言 今天我们开始讲“行为型”设计模式的第三个模式,该模式是[迭代器模式],英文名称是:Iterator Pattern.还是老套路,先从名字上来看看.“迭代器模式”我第一次看到这个名称,我的理解 ...

  5. css不受高度限制实现文本超出隐藏并以省略号结束

    文本超出省略号显示代码: overflow: hidden; text-overflow:ellipsis; white-space: nowrap;width: 100px; /*宽度做好限制*/ ...

  6. 照葫芦画瓢系列之Java --- eclipse下使用maven创建Struts 2项目

    一.创建Maven项目 http://www.cnblogs.com/zhanqun/p/8425571.html 二.添加struts2核心依赖包以及其他依赖项 打开pom.xm配置界面 点击Add ...

  7. git 入门教程之备忘录[译]

    备忘录[译] 创建 | Create 克隆一个已存在的仓库 | Clone an existing repository git clone git@github.com:snowdreams1006 ...

  8. mac上Docker安装&初体验

    Docker是什么? Docker是一个虚拟环境容器,可以将你的开发环境.代码.配置文件等一并打包到这个容器中,并发布和应用到任意平台中. 官方文档:https://docs.docker.com H ...

  9. windows虚拟内存机制

    在windows系统中个,每个进程拥有自己独立的虚拟地址空间(Virtual Address Space).这一地址空间的大小与计算机硬件.操作系统以及应用程序都有关系. 对于32位程序来说,最多能使 ...

  10. Cas 服务器 JDBC身份校验

    之前的Cas服务器一直使用静态配置的账号密码进行身份认证,现在要让Cas服务器通过MySQL数据库中的用户信息进行身份认证. 一.添加数据库访问依赖 <!-- https://mvnreposi ...