题意,给定n,k,求有多少排列是的 | p[i]-i |=1 的数量为k。

Solution

直接dp会有很大的后效性。

所以我们考虑固定k个数字使得它们是合法的,所以我们设dp[i][j][0/1][0/1]表示前i个数,填了j个数,当前位置有没有被选,下一位有没有被选,这样做的话,转移会比较简单。

那么除去这j个数,剩下的数随便填,乘上全排列就好了。

但这样会多算。

然后这种问题有一个容斥模型,直接套上就好了。

#include<iostream>
#include<cstdio>
#define N 1002
using namespace std;
typedef long long ll;
int n,k;
ll dp[N][N][][],jie[N],ni[N],g[N],ans;
const int mod=1e9+;
ll calc(int n,int m){
return jie[n]*ni[m]%mod*ni[n-m]%mod;
}
ll power(ll x,int y){
ll ans=;
while(y){
if(y&)(ans*=x)%=mod;
(x*=x)%=mod;
y>>=;
}
return ans;
}
int main(){
scanf("%d%d",&n,&k);jie[]=;
for(int i=;i<=n;++i)jie[i]=(jie[i-]*i)%mod;ni[n]=power(jie[n],mod-);
for(int i=n-;i>=;--i)ni[i]=ni[i+]*(i+)%mod;
dp[][][][]=;
for(int i=;i<=n;++i){
for(int j=;j<=n;++j){
dp[i][j][][]=(dp[i-][j][][]+dp[i-][j][][])%mod;
dp[i][j][][]=(dp[i-][j][][]+dp[i-][j][][])%mod;
if(j){
(dp[i][j][][]+=dp[i-][j-][][])%=mod;
dp[i][j][][]+=(dp[i-][j-][][]+dp[i-][j-][][])%mod;
dp[i][j][][]%=mod;
(dp[i][j][][]+=dp[i-][j-][][])%=mod;
dp[i][j][][]+=(dp[i-][j-][][]+dp[i-][j-][][])%mod;
dp[i][j][][]%=mod;
}
}
}
for(int i=k;i<=n;++i)
g[i]=(dp[n][i][][]+dp[n][i][][])%mod*jie[n-i]%mod;
for(int i=k;i<=n;++i)(ans+=(((i-k)&)?-:)*calc(i,k)*g[i]%mod+mod)%=mod;
ans=(ans+mod)%mod;
cout<<ans;
return ;
}

CF285E Positions in Permutations(dp+容斥)的更多相关文章

  1. 【做题】CF285E. Positions in Permutations——dp+容斥

    题意:求所有长度为\(n\)的排列\(p\)中,有多少个满足:对于所有\(i \,(1 \leq i \leq n)\),其中恰好有\(k\)个满足\(|p_i - i| = 1\).答案对\(10^ ...

  2. 【CF715E】Complete the Permutations(容斥,第一类斯特林数)

    [CF715E]Complete the Permutations(容斥,第一类斯特林数) 题面 CF 洛谷 给定两个排列\(p,q\),但是其中有些位置未知,用\(0\)表示. 现在让你补全两个排列 ...

  3. bzoj 3622 DP + 容斥

    LINK 题意:给出n,k,有a,b两种值,a和b间互相配对,求$a>b$的配对组数-b>a的配对组数恰好等于k的情况有多少种. 思路:粗看会想这是道容斥组合题,但关键在于如何得到每个a[ ...

  4. 【BZOJ 4665】 4665: 小w的喜糖 (DP+容斥)

    4665: 小w的喜糖 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 94  Solved: 53 Description 废话不多说,反正小w要发喜 ...

  5. [Luogu P1450] [HAOI2008]硬币购物 背包DP+容斥

    题面 传送门:https://www.luogu.org/problemnew/show/P1450 Solution 这是一道很有意思的在背包里面做容斥的题目. 首先,我们可以很轻松地想到暴力做背包 ...

  6. CodeForces - 285E: Positions in Permutations(DP+组合数+容斥)

    Permutation p is an ordered set of integers p1,  p2,  ...,  pn, consisting of n distinct positive in ...

  7. HDU 5838 (状压DP+容斥)

    Problem Mountain 题目大意 给定一张n*m的地图,由 . 和 X 组成.要求给每个点一个1~n*m的数字(每个点不同),使得编号为X的点小于其周围的点,编号为.的点至少大于一个其周围的 ...

  8. Codeforces 611C New Year and Domino DP+容斥

    "#"代表不能放骨牌的地方,"."是可以放 500*500的矩阵,q次询问 开两个dp数组,a,b,a统计横着放的方案数,b表示竖着放,然后询问时O(1)的,容 ...

  9. [BZOJ 1042] [HAOI2008] 硬币购物 【DP + 容斥】

    题目链接:BZOJ - 1042 题目分析 首先 Orz Hzwer ,代码题解都是看的他的 blog. 这道题首先使用DP预处理,先求出,在不考虑每种硬币个数的限制的情况下,每个钱数有多少种拼凑方案 ...

随机推荐

  1. Linux 典型应用之服务管理

    crontab 定时任务 用户所建立的crontab文件中,每一行都代表一项任务,每行的每个字段代表一项设置,它的格式共分为六个字段,前五段是时间设定段,第六段是要执行的命令段,格式如下: minut ...

  2. 自签名证书 nginx tomcat

    给Nginx配置一个自签名的SSL证书 - 廖雪峰的官方网站 https://www.liaoxuefeng.com/article/0014189023237367e8d42829de24b6eaf ...

  3. Windows Docker 安装

    win7.win8 .win10等需要利用 docker toolbox 来安装,国内可以使用阿里云的镜像来下载,下载地址:http://mirrors.aliyun.com/docker-toolb ...

  4. Oracle RMAN备份与还原

    RMAN在数据库服务器的帮助下实现数据库文件.控制文件.数据库文件与控制文件的映像副本.归档日志文件.数据库服务器参数文件的备份. RMAN的特点: (1) 支持增量备份:传统的exp与expdp备份 ...

  5. vue.js 添加 fastclick的支持

    fastclick:处理移动端click事件300毫秒延迟 1.兼容性 iOS 3及更高版本的移动Safari iOS 5及更高版本的Chrome Android上的Chrome(ICS) Opera ...

  6. VMWARE中NAT下获取不到IP

    1.编辑-虚拟网络编辑器-dhcp设置 2.虚拟机-可移动设备-网络适配器-设置,注意:这里一定要选nat,当初我就是选了桥接,死活上不去,搞了2个小时.

  7. HTML5经典实例——1基础语法和语义

    1指定DOCTYPE 在页面的最开始处指定HTML5 DOCTYPE DOCTYPE是不区分大小写的.可以任意的使用大小写. <!DOCTYPE html> <html lang=& ...

  8. 读懂掌握 Python logging 模块源码 (附带一些 example)

    搜了一下自己的 Blog 一直缺乏一篇 Python logging 模块的深度使用的文章.其实这个模块非常常用,也有非常多的滥用.所以看看源码来详细记录一篇属于 logging 模块的文章. 整个 ...

  9. python学习笔记(10)--组合数据类型(序列类型)

    序列是具有先后关系的一组数据,是一维元素向量,元素类型可以不同,类似数学元素序列,元素间由序号引导,通过下标访问序列的特定元素.序列类型是一个基类类型,字符串类型,元祖类型,列表类型都属于序列类型. ...

  10. 死锁问题分析(个人认为重点讲到了gap间隙锁,解决了我一些不明报死锁的问题)

    线上某服务时不时报出如下异常(大约一天二十多次):“Deadlock found when trying to get lock;”. Oh, My God! 是死锁问题.尽管报错不多,对性能目前看来 ...