CF285E Positions in Permutations(dp+容斥)
题意,给定n,k,求有多少排列是的 | p[i]-i |=1 的数量为k。
Solution
直接dp会有很大的后效性。
所以我们考虑固定k个数字使得它们是合法的,所以我们设dp[i][j][0/1][0/1]表示前i个数,填了j个数,当前位置有没有被选,下一位有没有被选,这样做的话,转移会比较简单。
那么除去这j个数,剩下的数随便填,乘上全排列就好了。
但这样会多算。
然后这种问题有一个容斥模型,直接套上就好了。
#include<iostream>
#include<cstdio>
#define N 1002
using namespace std;
typedef long long ll;
int n,k;
ll dp[N][N][][],jie[N],ni[N],g[N],ans;
const int mod=1e9+;
ll calc(int n,int m){
return jie[n]*ni[m]%mod*ni[n-m]%mod;
}
ll power(ll x,int y){
ll ans=;
while(y){
if(y&)(ans*=x)%=mod;
(x*=x)%=mod;
y>>=;
}
return ans;
}
int main(){
scanf("%d%d",&n,&k);jie[]=;
for(int i=;i<=n;++i)jie[i]=(jie[i-]*i)%mod;ni[n]=power(jie[n],mod-);
for(int i=n-;i>=;--i)ni[i]=ni[i+]*(i+)%mod;
dp[][][][]=;
for(int i=;i<=n;++i){
for(int j=;j<=n;++j){
dp[i][j][][]=(dp[i-][j][][]+dp[i-][j][][])%mod;
dp[i][j][][]=(dp[i-][j][][]+dp[i-][j][][])%mod;
if(j){
(dp[i][j][][]+=dp[i-][j-][][])%=mod;
dp[i][j][][]+=(dp[i-][j-][][]+dp[i-][j-][][])%mod;
dp[i][j][][]%=mod;
(dp[i][j][][]+=dp[i-][j-][][])%=mod;
dp[i][j][][]+=(dp[i-][j-][][]+dp[i-][j-][][])%mod;
dp[i][j][][]%=mod;
}
}
}
for(int i=k;i<=n;++i)
g[i]=(dp[n][i][][]+dp[n][i][][])%mod*jie[n-i]%mod;
for(int i=k;i<=n;++i)(ans+=(((i-k)&)?-:)*calc(i,k)*g[i]%mod+mod)%=mod;
ans=(ans+mod)%mod;
cout<<ans;
return ;
}
CF285E Positions in Permutations(dp+容斥)的更多相关文章
- 【做题】CF285E. Positions in Permutations——dp+容斥
题意:求所有长度为\(n\)的排列\(p\)中,有多少个满足:对于所有\(i \,(1 \leq i \leq n)\),其中恰好有\(k\)个满足\(|p_i - i| = 1\).答案对\(10^ ...
- 【CF715E】Complete the Permutations(容斥,第一类斯特林数)
[CF715E]Complete the Permutations(容斥,第一类斯特林数) 题面 CF 洛谷 给定两个排列\(p,q\),但是其中有些位置未知,用\(0\)表示. 现在让你补全两个排列 ...
- bzoj 3622 DP + 容斥
LINK 题意:给出n,k,有a,b两种值,a和b间互相配对,求$a>b$的配对组数-b>a的配对组数恰好等于k的情况有多少种. 思路:粗看会想这是道容斥组合题,但关键在于如何得到每个a[ ...
- 【BZOJ 4665】 4665: 小w的喜糖 (DP+容斥)
4665: 小w的喜糖 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 94 Solved: 53 Description 废话不多说,反正小w要发喜 ...
- [Luogu P1450] [HAOI2008]硬币购物 背包DP+容斥
题面 传送门:https://www.luogu.org/problemnew/show/P1450 Solution 这是一道很有意思的在背包里面做容斥的题目. 首先,我们可以很轻松地想到暴力做背包 ...
- CodeForces - 285E: Positions in Permutations(DP+组合数+容斥)
Permutation p is an ordered set of integers p1, p2, ..., pn, consisting of n distinct positive in ...
- HDU 5838 (状压DP+容斥)
Problem Mountain 题目大意 给定一张n*m的地图,由 . 和 X 组成.要求给每个点一个1~n*m的数字(每个点不同),使得编号为X的点小于其周围的点,编号为.的点至少大于一个其周围的 ...
- Codeforces 611C New Year and Domino DP+容斥
"#"代表不能放骨牌的地方,"."是可以放 500*500的矩阵,q次询问 开两个dp数组,a,b,a统计横着放的方案数,b表示竖着放,然后询问时O(1)的,容 ...
- [BZOJ 1042] [HAOI2008] 硬币购物 【DP + 容斥】
题目链接:BZOJ - 1042 题目分析 首先 Orz Hzwer ,代码题解都是看的他的 blog. 这道题首先使用DP预处理,先求出,在不考虑每种硬币个数的限制的情况下,每个钱数有多少种拼凑方案 ...
随机推荐
- linux之常见错误
在日常开发中,尤其是在Linux中进行操作的时候,经常会碰到各种各样的错误.记录一下,熟能生巧,慢慢参透linux的奥秘 1) 在安装ssl证书的时候,发生certbot命令无法使用的情况 解决方案: ...
- redux模块化demo
store.js 在redux中 store 是唯一的. import {createStore} from 'redux'; import reducer from './reducer' // 引 ...
- png8、16、24、32位的区别
我们都知道一张图片可以保存为很多种不同的格式,比如bmp/png/jpeg/gif等等.这个是从文件格式的角度看,我们抛开文件格式,看图片本身,我们可以分为8位, 16位, 24位, 32位等. 单击 ...
- Could not render e, see the console.
错误截图: 解决: 在application.properties中开启swagger swagger2.enable=true
- mysql第一天【mysqldump导出数据和mysql导入数据】
1.使用mysqldump导出数据到本地sql文件 在mysql>bin下执行: 例如: mysqldump -hrm-2ze8mpi5i65429l1qvo.mysql.rds.aliyunc ...
- PHP爬虫框架Snoopy的使用
参考文档: http://ibillxia.github.io/blog/2010/08/10/php-connecting-tool-snoopy-introduction-and-applicat ...
- font_awesome的icon库的使用
1.使用cdn引入font_awesome图标库的css文件 例如:index.htm <html><head><title>font_awesome test&l ...
- Java的hashCode和equals方法
当然健壮的代码,两个都重写那是最好. 用不到hashCode的, 也没有必要重写hashCode. 个人感觉. 哈希机制的Java集合类,例如 Hashtable, HashMap, HashSet ...
- QTP 自动货测试桌面程序-笔记-运行结果中添加截图
3种方法: 方法1:使用设置:SnapshotReportMode oldMode = Setting("SnapshotReportMode") Setting("Sn ...
- sqlmap-学习1 配置环境
sqlmap是一款非常强大的开源sql自动化注入工具,可以用来检测和利用sql注入漏洞.它由python语言开发而成,因此运行需要安装python环境 1 安装 python (https://www ...