题意,给定n,k,求有多少排列是的 | p[i]-i |=1 的数量为k。

Solution

直接dp会有很大的后效性。

所以我们考虑固定k个数字使得它们是合法的,所以我们设dp[i][j][0/1][0/1]表示前i个数,填了j个数,当前位置有没有被选,下一位有没有被选,这样做的话,转移会比较简单。

那么除去这j个数,剩下的数随便填,乘上全排列就好了。

但这样会多算。

然后这种问题有一个容斥模型,直接套上就好了。

#include<iostream>
#include<cstdio>
#define N 1002
using namespace std;
typedef long long ll;
int n,k;
ll dp[N][N][][],jie[N],ni[N],g[N],ans;
const int mod=1e9+;
ll calc(int n,int m){
return jie[n]*ni[m]%mod*ni[n-m]%mod;
}
ll power(ll x,int y){
ll ans=;
while(y){
if(y&)(ans*=x)%=mod;
(x*=x)%=mod;
y>>=;
}
return ans;
}
int main(){
scanf("%d%d",&n,&k);jie[]=;
for(int i=;i<=n;++i)jie[i]=(jie[i-]*i)%mod;ni[n]=power(jie[n],mod-);
for(int i=n-;i>=;--i)ni[i]=ni[i+]*(i+)%mod;
dp[][][][]=;
for(int i=;i<=n;++i){
for(int j=;j<=n;++j){
dp[i][j][][]=(dp[i-][j][][]+dp[i-][j][][])%mod;
dp[i][j][][]=(dp[i-][j][][]+dp[i-][j][][])%mod;
if(j){
(dp[i][j][][]+=dp[i-][j-][][])%=mod;
dp[i][j][][]+=(dp[i-][j-][][]+dp[i-][j-][][])%mod;
dp[i][j][][]%=mod;
(dp[i][j][][]+=dp[i-][j-][][])%=mod;
dp[i][j][][]+=(dp[i-][j-][][]+dp[i-][j-][][])%mod;
dp[i][j][][]%=mod;
}
}
}
for(int i=k;i<=n;++i)
g[i]=(dp[n][i][][]+dp[n][i][][])%mod*jie[n-i]%mod;
for(int i=k;i<=n;++i)(ans+=(((i-k)&)?-:)*calc(i,k)*g[i]%mod+mod)%=mod;
ans=(ans+mod)%mod;
cout<<ans;
return ;
}

CF285E Positions in Permutations(dp+容斥)的更多相关文章

  1. 【做题】CF285E. Positions in Permutations——dp+容斥

    题意:求所有长度为\(n\)的排列\(p\)中,有多少个满足:对于所有\(i \,(1 \leq i \leq n)\),其中恰好有\(k\)个满足\(|p_i - i| = 1\).答案对\(10^ ...

  2. 【CF715E】Complete the Permutations(容斥,第一类斯特林数)

    [CF715E]Complete the Permutations(容斥,第一类斯特林数) 题面 CF 洛谷 给定两个排列\(p,q\),但是其中有些位置未知,用\(0\)表示. 现在让你补全两个排列 ...

  3. bzoj 3622 DP + 容斥

    LINK 题意:给出n,k,有a,b两种值,a和b间互相配对,求$a>b$的配对组数-b>a的配对组数恰好等于k的情况有多少种. 思路:粗看会想这是道容斥组合题,但关键在于如何得到每个a[ ...

  4. 【BZOJ 4665】 4665: 小w的喜糖 (DP+容斥)

    4665: 小w的喜糖 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 94  Solved: 53 Description 废话不多说,反正小w要发喜 ...

  5. [Luogu P1450] [HAOI2008]硬币购物 背包DP+容斥

    题面 传送门:https://www.luogu.org/problemnew/show/P1450 Solution 这是一道很有意思的在背包里面做容斥的题目. 首先,我们可以很轻松地想到暴力做背包 ...

  6. CodeForces - 285E: Positions in Permutations(DP+组合数+容斥)

    Permutation p is an ordered set of integers p1,  p2,  ...,  pn, consisting of n distinct positive in ...

  7. HDU 5838 (状压DP+容斥)

    Problem Mountain 题目大意 给定一张n*m的地图,由 . 和 X 组成.要求给每个点一个1~n*m的数字(每个点不同),使得编号为X的点小于其周围的点,编号为.的点至少大于一个其周围的 ...

  8. Codeforces 611C New Year and Domino DP+容斥

    "#"代表不能放骨牌的地方,"."是可以放 500*500的矩阵,q次询问 开两个dp数组,a,b,a统计横着放的方案数,b表示竖着放,然后询问时O(1)的,容 ...

  9. [BZOJ 1042] [HAOI2008] 硬币购物 【DP + 容斥】

    题目链接:BZOJ - 1042 题目分析 首先 Orz Hzwer ,代码题解都是看的他的 blog. 这道题首先使用DP预处理,先求出,在不考虑每种硬币个数的限制的情况下,每个钱数有多少种拼凑方案 ...

随机推荐

  1. 消除element.style { }

    1.在写前台页面时,我们会发现控制台里会自动出现一些样式覆盖掉我们定义的样式: 解决的办法: 把被覆盖的样式单独定义出来,并在样式后面加上 !important,表示高优先级.

  2. PAT L2-020 功夫传人

    https://pintia.cn/problem-sets/994805046380707840/problems/994805059118809088 一门武功能否传承久远并被发扬光大,是要看缘分 ...

  3. ESLint常见命令(规则表)

    1 禁用 ESLint: /* eslint-disable */ ; console.log(a); /* eslint-enable */ 2 禁用一条规则: /*eslint-disable n ...

  4. IdentityServer4【QuickStart】之利用OpenID Connect添加用户认证

    利用OpenID Connect添加用户认证 利用OpenID Connect添加用户认证 在这个示例中我们想要通过OpenID Connect协议将交互用户添加到我们的IdentityServer上 ...

  5. [转帖]Windows批处理(cmd/bat)常用命令小结

    Windows批处理(cmd/bat)常用命令小结 非常值得学习的文档 先放这里 有时间做实验, 转载自:“趣IT”微信公共号 前言 批处理文件(batch file)包含一系列 DOS命令,通常用于 ...

  6. [转帖]Introduction to text manipulation on UNIX-based systems

    Introduction to text manipulation on UNIX-based systems https://www.ibm.com/developerworks/aix/libra ...

  7. [转帖]cnblog 新闻 : 亚太云计算市场报告:腾讯位列前五 份额首超谷歌

    亚太云计算市场报告:腾讯位列前五 份额首超谷歌 投递人 itwriter 发布于 2019-03-18 12:06 评论(1) 有213人阅读 原文链接 [收藏] « » 美国市场研究机构 Syner ...

  8. mybatis源码分析(三)------------映射文件的解析

    本篇文章主要讲解映射文件的解析过程 Mapper映射文件有哪几种配置方式呢?看下面的代码: <!-- 映射文件 --> <mappers> <!-- 通过resource ...

  9. 将Vue移动端项目打包成手机app---HBuilder

    将移动端页面打包成app 1.使用 HBuilder 直接编译打包 点击左上角 文件>打开目录>选择目录  选择用Webpack打包好的dist文件目录 由于我添加到项目了,所以会显示该项 ...

  10. 从 Aliyun 经典网络迁移到 Aliyun VPC 网络

    由于阿里云策略问题,要求用户从经典网络中全部迁出,搬迁到他们设置的 VPC 网络中.这里的 VPC 大概指的是逻辑上的一个虚拟局域网.即使是实际上你的机器垮机房在阿里云的不同机房.但是他们仍然能从逻辑 ...