Equivalent Sets HDU - 3836 (Tarjan)
题目说给出一些子集,如果A是B的子集,B是A的子集,那么A和B就是相等的,然后给出n个集合m个关系,m个关系表示u是v的子集,问你最小再添加多少个关系可以让这n个集合都是相等的
如果这n个几个都是互相相等的,那么就等于是这n个集合看成点以后,构成的图是一个强连通图,那么就是说在加多少边让这个图变成强联通图。
先缩点然后做判断
1,如果原本的图本来就是强联通的,那么答案就是0
2.如果原本的图不是强联通的,那就去判断缩完以后的点的入度和出度,取入度为0的和出度为0的点数的最大值,就是最小需要加的边
#include<map>
#include<set>
#include<ctime>
#include<cmath>
#include<stack>
#include<queue>
#include<string>
#include<vector>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define lowbit(x) (x & (-x)) typedef unsigned long long int ull;
typedef long long int ll;
const double pi = 4.0*atan(1.0);
const int inf = 0x3f3f3f3f;
const int maxn = ;
const int maxm = ;
const int mod = ;
using namespace std; int n, m, tol, T;
int cnt, sz, top;
struct Node {
int u, v;
int next;
};
Node node[maxm];
int head[maxn];
int dfn[maxn];
int low[maxn];
int ind[maxn];
int oud[maxn];
int sta[maxn];
int point[maxn];
bool vis[maxn]; void init() {
tol = cnt = top = sz = ;
memset(dfn, , sizeof dfn);
memset(low, , sizeof low);
memset(ind, , sizeof ind);
memset(oud, , sizeof oud);
memset(vis, , sizeof vis);
memset(head, -, sizeof head);
memset(point, , sizeof point);
} void addnode(int u, int v) {
node[tol].u = u;
node[tol].v = v;
node[tol].next = head[u];
head[u] = tol++;
} void dfs(int u) {
int v;
dfn[u] = low[u] = ++cnt;
sta[sz++] = u;
vis[u] = true;
for(int i=head[u]; ~i; i=node[i].next) {
v = node[i].v;
if(!dfn[v]) {
dfs(v);
low[u] = min(low[u], low[v]);
} else if(vis[v]) {
low[u] = min(low[u], dfn[v]);
}
}
if(dfn[u] == low[u]) {
top++;
do {
v = sta[--sz];
point[v] = top;
vis[v] = false;
} while(v != u);
}
} void tarjan() {
for(int u=; u<=n; u++) {
if(!dfn[u]) dfs(u);
}
} void solve() {
for(int u=; u<=n; u++) {
for(int i=head[u]; ~i; i=node[i].next) {
int v = node[i].v;
if(point[u] != point[v]) {
ind[point[v]]++;
oud[point[u]]++;
}
}
}
} int main() {
while(~scanf("%d%d", &n, &m)) {
init();
int u, v;
for(int i=; i<=m; i++) {
scanf("%d%d", &u, &v);
addnode(u, v);
}
tarjan();
// for(int i=1; i<=n; i++) printf("!!!!%d %d\n", i, point[i]);
if(top == ) {
printf("0\n");
continue;
}
solve();
int ans1=, ans2=;
memset(vis, , sizeof vis);
for(int i=; i<=top; i++) {
if(ind[i] == ) ans1++;
if(oud[i] == ) ans2++;
}
printf("%d\n", max(ans1, ans2));
}
return ;
}
Equivalent Sets HDU - 3836 (Tarjan)的更多相关文章
- Equivalent Sets HDU - 3836 2011多校I tarjan强连通分量
题意: 给一些集合 要求证明所有集合是相同的 证明方法是,如果$A∈B$,$B∈A$那么$A=B$成立 每一次证明可以得出一个$X∈Y$ 现在已经证明一些$A∈B$成立 求,最少再证明多少次,就可以完 ...
- Bomb HDU - 5934 (Tarjan)
#include<map> #include<set> #include<ctime> #include<cmath> #include<stac ...
- 【BZOJ4331】[JSOI2012]越狱老虎桥(Tarjan)
[BZOJ4331][JSOI2012]越狱老虎桥(Tarjan) 题面 BZOJ 然而BZOJ是权限题QwQ 洛谷 题解 先求出所有割边,那么显然要割掉一条割边. 如果要加入一条边,那么显然是把若干 ...
- 【BZOJ2208】[JSOI2010]连通数(Tarjan)
[BZOJ2208][JSOI2010]连通数(Tarjan) 题面 BZOJ 洛谷 题解 先吐槽辣鸡洛谷数据,我写了个\(O(nm)\)的都过了. #include<iostream> ...
- A * B Problem Plus HDU - 1402 (FFT)
A * B Problem Plus HDU - 1402 (FFT) Calculate A * B. InputEach line will contain two integers A and ...
- D - 淡黄的长裙 HDU - 4221(贪心)
D - 淡黄的长裙 HDU - 4221(贪心) James is almost mad! Currently, he was assigned a lot of works to do, so ma ...
- 浅谈强连通分量(Tarjan)
强连通分量\(\rm (Tarjan)\) --作者:BiuBiu_Miku \(1.\)一些术语 · 无向图:指的是一张图里面所有的边都是双向的,好比两个人打电话 \(U ...
- hdu 5055(坑)
题目链接:http://acm.hdu.edu.cn/showproblem.php? pid=5055 Bob and math problem Time Limit: 2000/1000 MS ( ...
- {part1}DFN+LOW(tarjan)割点
什么是jarjan? 1)求割点 定义:在无向连通图中,如果去掉一个点/边,剩下的点之间不连通,那么这个点/边就被称为割点/边(或割顶/桥). 意义:由于割点和割边涉及到图的连通性,所以快速地求出割点 ...
随机推荐
- .net 报错汇总——持续更新
1.未能找到 CodeDom 提供程序类型“Microsoft.CodeDom.Providers.DotNetCompilerPla PM> Install-Package Microsoft ...
- [转帖]一段关于Unix与 Linux的暗黑史
一段关于Unix与 Linux的暗黑史 https://blog.csdn.net/a343315623/article/details/51436715 微软曾经开发过 MS-DOS Xenix O ...
- [转帖]Oracle 裁员史:技术人死于重组,卒于云计算
Oracle 裁员史:技术人死于重组,卒于云计算 https://www.infoq.cn/article/tm-mcdHCPCI4eEwr6dbY 大厂裁员 我妈妈也总担心我没工作了 怎么还房贷 田 ...
- spring AOP的用法
AOP,面向切面编程,它能把与核心业务逻辑无关的散落在各处并且重复的代码给封装起来,降低了模块之间的耦合度,便于维护.具体的应用场景有:日志,权限和事务管理这些方面.可以通过一张图来理解下: Spri ...
- Spring的Bean配置
IOC和DI 网上概念很多,感兴趣可以去搜一搜,在这里我就给个比喻: IOC:以前我们买东西都要去商店买,用了IOC之后,我们只要在门口放个箱子, Spring就会给我相应商品,ಠᴗಠ 举个例子 cl ...
- JavaList addAll removeAll
List<String>list1=new ArrayList<>(); list1.add("a"); list1.add("b"); ...
- Django Rest framework 框架之解析器
解析器 序列化***** 请求数据进行校验 对queryset进行序列化处理 分页 路由 视图 渲染器
- 如何确定 Hadoop map和reduce的个数--map和reduce数量之间的关系是什么?
1.map和reduce的数量过多会导致什么情况?2.Reduce可以通过什么设置来增加任务个数?3.一个task的map数量由谁来决定?4.一个task的reduce数量由谁来决定? 一般情况下,在 ...
- Spark 数据倾斜
Spark 数据倾斜解决方案 2017年03月29日 17:09:58 阅读数:382 现象 当你的应用程序发生以下情况时你该考虑下数据倾斜的问题了: 绝大多数task都可以愉快的执行,总 ...
- xadmin快速搭建后台管理系统
一.xadmin的特点: 1.基于Bootstrap3:Xadmin使用Bootstrap3.0框架精心打造.基于Bootstrap3,Xadmin天生就支持在多种屏幕上无缝浏览,并完全支持Boots ...