Java NIO3:缓冲区Buffer
在上一篇中,我们介绍了NIO中的两个核心对象:缓冲区和通道,在谈到缓冲区时,我们说缓冲区对象本质上是一个数组,但它其实是一个特殊的数组,缓冲区对象内置了一些机制,能够跟踪和记录缓冲区的状态变化情况,如果我们使用get()方法从缓冲区获取数据或者使用put()方法把数据写入缓冲区,都会引起缓冲区状态的变化。
在缓冲区中,最重要的属性有下面三个,它们一起合作完成对缓冲区内部状态的变化跟踪:
position:指定了下一个将要被写入或者读取的元素索引,它的值由get()/put()方法自动更新,在新创建一个Buffer对象时,position被初始化为0。
limit:指定还有多少数据需要取出(在从缓冲区写入通道时),或者还有多少空间可以放入数据(在从通道读入缓冲区时)。
capacity:指定了可以存储在缓冲区中的最大数据容量,实际上,它指定了底层数组的大小,或者至少是指定了准许我们使用的底层数组的容量。
以上四个属性值之间有一些相对大小的关系:0 <= position <= limit <= capacity。如果我们创建一个新的容量大小为10的ByteBuffer对象,在初始化的时候,position设置为0,limit和 capacity被设置为10,在以后使用ByteBuffer对象过程中,capacity的值不会再发生变化,而其它两个个将会随着使用而变化。四个属性值分别如图所示:
现在我们可以从通道中读取一些数据到缓冲区中,注意从通道读取数据,相当于往缓冲区中写入数据。如果读取4个自己的数据,则此时position的值为4,即下一个将要被写入的字节索引为4,而limit仍然是10,如下图所示:
下一步把读取的数据写入到输出通道中,相当于从缓冲区中读取数据,在此之前,必须调用flip()方法,该方法将会完成两件事情:
1. 把limit设置为当前的position值
2. 把position设置为0
由于position被设置为0,所以可以保证在下一步输出时读取到的是缓冲区中的第一个字节,而limit被设置为当前的position,可以保证读取的数据正好是之前写入到缓冲区中的数据,如下图所示:
现在调用get()方法从缓冲区中读取数据写入到输出通道,这会导致position的增加而limit保持不变,但position不会超过limit的值,所以在读取我们之前写入到缓冲区中的4个自己之后,position和limit的值都为4,如下图所示:
在从缓冲区中读取数据完毕后,limit的值仍然保持在我们调用flip()方法时的值,调用clear()方法能够把所有的状态变化设置为初始化时的值,如下图所示:
下面用一段代码来验证这个过程,如下所示:
- package com.demo.nio;
- import java.io.FileInputStream;
- import java.nio.Buffer;
- import java.nio.ByteBuffer;
- import java.nio.channels.FileChannel;
- public class TestBuffer {
- public static void main(String[] args) throws Exception{
- FileInputStream fin = new FileInputStream("c:\\test.txt");
- FileChannel fc = fin.getChannel();
- ByteBuffer buffer = ByteBuffer.allocate(10);
- output("初始化",buffer);
- fc.read(buffer);
- output("调用read()", buffer);
- buffer.flip();
- output("调用flip()", buffer);
- while (buffer.remaining() > 0) {
- byte b = buffer.get();
- // System.out.print(((char)b));
- }
- output("调用get()", buffer);
- buffer.clear();
- output("调用clear()", buffer);
- fin.close();
- }
- public static void output(String step, Buffer buffer) {
- System.out.println(step + " : ");
- System.out.print("capacity: " + buffer.capacity() + ", ");
- System.out.print("position: " + buffer.position() + ", ");
- System.out.println("limit: " + buffer.limit());
- System.out.println();
- }
- }
完成的输出结果为:
缓冲区的分配
在前面的几个例子中,我们已经看过了,在创建一个缓冲区对象时,会调用静态方法allocate()来指定缓冲区的容量,其实调用 allocate()相当于创建了一个指定大小的数组,并把它包装为缓冲区对象。或者我们也可以直接将一个现有的数组,包装为缓冲区对象,如下示例代码所示:
- public class BufferWrap {
- public void myMethod()
- {
- // 分配指定大小的缓冲区
- ByteBuffer buffer1 = ByteBuffer.allocate(10);
- // 包装一个现有的数组
- byte array[] = new byte[10];
- ByteBuffer buffer2 = ByteBuffer.wrap( array );
- }
- }
缓冲区分片:
在NIO中,除了可以分配或者包装一个缓冲区对象外,还可以根据现有的缓冲区对象来创建一个子缓冲区,即在现有缓冲区上切出一片来作为一个新的缓冲区,但现有的缓冲区与创建的子缓冲区在底层数组层面上是数据共享的,也就是说,子缓冲区相当于是现有缓冲区的一个视图窗口。调用slice()方法可以创建一个子缓冲区,让我们通过例子来看一下:
- @Test
- public void testSliceBuffer(){
- ByteBuffer buffer = ByteBuffer.allocate(10);
- // 缓冲区中的数据0-9
- for (int i=0; i<buffer.capacity(); i++) {
- buffer.put( (byte)i );
- }
- // 创建子缓冲区
- buffer.position(3);
- buffer.limit(7);
- ByteBuffer slice = buffer.slice();
- // 改变子缓冲区的内容
- for (int i=0; i<slice.capacity(); i++) {
- byte b = slice.get( i );
- b *= 10;
- slice.put( i, b );
- }
- buffer.position( 0 );
- buffer.limit( buffer.capacity() );
- while (buffer.remaining()>0) {
- System.out.println( buffer.get() );
- }
- System.out.print("\n");
- }
在该示例中,分配了一个容量大小为10的缓冲区,并在其中放入了数据0-9,而在该缓冲区基础之上又创建了一个子缓冲区,并改变子缓冲区中的内容,从最后输出的结果来看,只有子缓冲区“可见的”那部分数据发生了变化,并且说明子缓冲区与原缓冲区是数据共享的,输出结果如下所示:
只读缓冲区
只读缓冲区非常简单,可以读取它们,但是不能向它们写入数据。可以通过调用缓冲区的asReadOnlyBuffer()方法,将任何常规缓冲区转 换为只读缓冲区,这个方法返回一个与原缓冲区完全相同的缓冲区,并与原缓冲区共享数据,只不过它是只读的。如果原缓冲区的内容发生了变化,只读缓冲区的内容也随之发生变化:
- @Test
- public void testReadOnlyBuffer(){
- ByteBuffer buffer = ByteBuffer.allocate( 10 );
- // 缓冲区中的数据0-9
- for (int i=0; i<buffer.capacity(); ++i) {
- buffer.put( (byte)i );
- }
- // 创建只读缓冲区
- ByteBuffer readonly = buffer.asReadOnlyBuffer();
- // 改变原缓冲区的内容
- for (int i=0; i<buffer.capacity(); ++i) {
- byte b = buffer.get( i );
- b *= 10;
- buffer.put( i, b );
- }
- readonly.position(0);
- readonly.limit(buffer.capacity());
- // 只读缓冲区的内容也随之改变
- while (readonly.remaining()>0) {
- System.out.println( readonly.get());
- }
- }
运行结果如下所示:
如果尝试修改只读缓冲区的内容,则会报ReadOnlyBufferException异常。只读缓冲区对于保护数据很有用。在将缓冲区传递给某个对象的方法时,无法知道这个方法是否会修改缓冲区中的数据。创建一个只读的缓冲区可以保证该缓冲区不会被修改。只可以把常规缓冲区转换为只读缓冲区,而不能将只读的缓冲区转换为可写的缓冲区。
Java NIO3:缓冲区Buffer的更多相关文章
- Java NIO -- 缓冲区(Buffer)的数据存取
缓冲区(Buffer): 一个用于特定基本数据类型的容器.由 java.nio 包定义的,所有缓冲区都是 Buffer 抽象类的子类.Java NIO 中的 Buffer 主要用于与 NIO 通道进行 ...
- JAVA NIO缓冲区(Buffer)------ByteBuffer常用方法
参考:https://blog.csdn.net/xialong_927/article/details/81044759 缓冲区(Buffer)就是在内存中预留指定大小的存储空间用来对输入/输出(I ...
- Java NIO 缓冲区 Buffer
缓冲区 Buffer 是 Java NIO 中一个核心概念,它是一个线性结构,容量有限,存放原始类型数据(boolean 除外)的容器. 1. Buffer 中可以存放的数据类型 java.nio.B ...
- Java NIO4:缓冲区Buffer(续)
一.什么是缓冲区 一个缓冲区对象是固定数量的数据的容器,其作用是一个存储器,或者分段运输区,在这里数据可被存储并在之后用于检索.缓冲区像前篇文章讨论的那样被写满和释放,对于每个非布尔原始数据 ...
- Java NIO之Buffer(缓冲区)
Java NIO中的缓存区(Buffer)用于和通道(Channel)进行交互.数据是从通道读入缓冲区,从缓冲区写入到通道中的. 缓冲区本质上是一块可以写入数据,然后可以从中读取数据的内存.这 ...
- Java-NIO(二):缓冲区(Buffer)的数据存取
缓冲区(Buffer): 一个用于特定基本数据类行的容器.有java.nio包定义的,所有缓冲区都是抽象类Buffer的子类. Java NIO中的Buffer主要用于与NIO通道进行交互,数据是从通 ...
- NIO(一)——缓冲区Buffer
NIO(一)--Buffer NIO简介 NIO即New IO,是用来代替标准IO的,提供了与标准IO完全不同传输方式. 核心: ...
- NIO之缓冲区(Buffer)的数据存取
缓冲区(Buffer) 一个用于特定基本数据类行的容器.有java.nio包定义的,所有缓冲区都是抽象类Buffer的子类. Java NIO中的Buffer主要用于与NIO通道进行交互,数据是从通道 ...
- java nio 缓冲区(一)
本文来自于我的个人博客:java nio 缓冲区(一) 我们以Buffer类開始对java.nio包的浏览历程.这些类是java.nio的构造基础. 这个系列中,我们将尾随<java NIO ...
随机推荐
- leetcode-53.最大子序和
leetcode-53.最大子序和 题意 给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和. 示例: 输入: [-2,1,-3,4,-1,2,1,- ...
- 算法:输入一个链表,输出该链表中倒数第k个结点。
算法:输入一个链表,输出该链表中倒数第k个结点.<剑指offer> 思路加到注释里面了: 1:两个if判断是否返回值为空,首个为空,没有第k个值: 2:for循环找到倒数第k个值,返回为a ...
- C#面向对象 类的封装
class student { public int _code; public int Code//属性 { //获取值 get { ; } //设置值 set { _code = value + ...
- Process 0:0:0 (0x1ffc) Worker 0x00000001E580A1A0 appears to be non-yielding on Scheduler 3. Thread creation time: 13153975602106.
现场报错如下: Process 0:0:0 (0x1ffc) Worker 0x00000001E580A1A0 appears to be non-yielding on Scheduler 3. ...
- [Hive_7] Hive 中的 DDL 操作
0. 说明 DDL(Data Definition Languages)语句:数据定义语言 这些语句定义了不同的数据段.数据库.表.列.索引等数据库对象的定义. 常用的语句关键字主要包括 create ...
- June 8. 2018 Week Week 23rd Friday
You'll have bad times, but it'll always wake you up to the good stuff you weren't paying attention t ...
- [福大软工] Z班 第6次成绩排行榜
作业要求 http://www.cnblogs.com/easteast/p/7668890.html 作业评分 本次作业从引言(5 ') . 用户场景(15 ').类图(10 ').界面原型(15 ...
- 06.Python网络爬虫之requests模块(2)
今日内容 session处理cookie proxies参数设置请求代理ip 基于线程池的数据爬取 知识点回顾 xpath的解析流程 bs4的解析流程 常用xpath表达式 常用bs4解析方法 引入 ...
- mysql 更新条件为查询出的结果
UPDATE category c INNER JOIN ( SELECT b.category_id FROM category a, (SELECT * FROM category WHERE d ...
- Java 8 新特性:3-函数(Function)接口
(原) 以前,在创建泛型时,是这么写的: List<String> list = new ArrayList<String>(); 现在,可以这么写了: List<Str ...