http://acm.timus.ru/problem.aspx?space=1&num=1132

题意:

求 x^2 ≡ n mod p  p是质数 的 解

本题中n>=1

特判p=2,接下来求当p是奇素数时的解

引理1:

引理2:方程有解当且仅当

定理:

设a满足 不是模p的二次剩余,

无解,

那么是二次剩余方程的解

#include<cstdio>
#include<cstdlib>
#include<algorithm> using namespace std; typedef long long LL; int w; struct T
{
int p,d;
}; int mod(LL a,int p)
{
a%=p;
if(a<) a+=p;
return a;
} int Pow(int a,int b,int p)
{
int res=;
for(;b;a=1LL*a*a%p,b>>=)
if(b&) res=1LL*res*a%p;
return res;
} //求勒让德符号
int Legendre(int a,int p)
{
return Pow(a,p->>,p);
} //二次域上的乘法
T mul(T a,T b,int p)
{
T ans;
ans.p=(1LL*a.p*b.p%p+1LL*a.d*b.d%p*w%p)%p;
ans.d=(1LL*a.p*b.d%p+1LL*a.d*b.p%p)%p;
return ans;
} //二次域上的快速幂
T power(T a,int b,int p)
{
T ans;
ans.p=;
ans.d=;
for(;b;a=mul(a,a,p),b>>=)
if(b&) ans=mul(ans,a,p);
return ans;
} int solve(int n,int p)
{
if(p==) return ;
if(Legendre(n,p)+==p) return -;
int a;
LL t;
while()
{
a=rand()%p;
t=1LL*a*a-n;
w=mod(t,p);
if(Legendre(w,p)+==p) break;
}
T tmp;
tmp.p=a;
tmp.d=;
T ans=power(tmp,p+>>,p);
return ans.p;
} int main()
{
int t;
scanf("%d",&t);
int n,p;
int a,b;
while(t--)
{
scanf("%d%d",&n,&p);
n%=p;
a=solve(n,p);
if(a==-)
{
puts("No root");
continue;
}
b=p-a;
if(a>b) swap(a,b);
if(a==b) printf("%d\n",a);
else printf("%d %d\n",a,b);
}
}

Timus 1132 Square Root(二次剩余)的更多相关文章

  1. Timus 1132 Square Root(二次剩余 解法2)

    不理解,背板子 #include<cstdio> using namespace std; int Pow(int a,int b,int p) { ; ) ) res=1LL*a*res ...

  2. URAL 1132 Square Root(二次剩余定理)题解

    题意: 求\(x^2 \equiv a \mod p\) 的所有整数解 思路: 二次剩余定理求解. 参考: 二次剩余Cipolla's algorithm学习笔记 板子: //二次剩余,p是奇质数 l ...

  3. Codeforces 715A. Plus and Square Root[数学构造]

    A. Plus and Square Root time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  4. Project Euler 80:Square root digital expansion 平方根数字展开

    Square root digital expansion It is well known that if the square root of a natural number is not an ...

  5. Codeforces 612E - Square Root of Permutation

    E. Square Root of Permutation A permutation of length n is an array containing each integer from 1 t ...

  6. Codeforces 715A & 716C Plus and Square Root【数学规律】 (Codeforces Round #372 (Div. 2))

    C. Plus and Square Root time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  7. (Problem 57)Square root convergents

    It is possible to show that the square root of two can be expressed as an infinite continued fractio ...

  8. Square Root

    Square RootWhen the square root functional configuration is selected, a simplified CORDIC algorithm ...

  9. Codeforces Round #372 (Div. 1) A. Plus and Square Root 数学题

    A. Plus and Square Root 题目连接: http://codeforces.com/contest/715/problem/A Description ZS the Coder i ...

随机推荐

  1. 【 HDU 1538 】A Puzzle for Pirates (海盗博弈论)

    BUPT2017 wintertraining(15) #5D HDU 1538 偷懒直接放个果壳的链接了,感觉比网上直接找这题的题解要更正确.易懂. 海盗博弈论 代码 #include <cs ...

  2. Centos 5 无法使用ifconfig命令

    问题原因,在环境变量里没有包含文件夹 / sbin , 该文件夹下存有 ifconfig, 可以在终端下 cat /etc/profile, 可以发现没有关于 / sbin 的环境变量 解决方法:vi ...

  3. 洛谷P5069 [Ynoi2015]纵使日薄西山(树状数组,set)

    洛谷题目传送门 一血祭 向dllxl致敬! 算是YNOI中比较清新的吧,毕竟代码只有1.25k. 首先我们对着题意模拟,寻找一些思路. 每次选了一个最大的数后,它和它周围两个数都要减一.这样无论如何, ...

  4. ViewHolder模式的简洁写法

    大家通常怎么写ViewHolder呢? ViewHolder holder = null; if(convertView == null){ convertView = mInflater.infla ...

  5. 板载 SPI-FLASH 的烧写方法

    @2018-12-15 [筹划] 通过烧录器(JTAG/SWD)即可方便的烧写板载外部 FLASH [参考] 如何更好地设计面向在板烧录的产品(一)SPI Flash篇 keil将程序装入外部FLAS ...

  6. 【php】php目录路径函数系列

    在写框架和项目时候我们经常要获取绝对路径,php有内置函数realpath(),  也可以写个函数来实现这个功能 function getAbsolutePath($path) { $path = s ...

  7. centos7破解安装fisheye和Crucible

    背景介绍: Atlassian的东西相信大家都不陌生,JIRA.Confluence……虽然说这些产品都要收费,也可以申请试用: FishEye 可以方便地查看代码,而Crucible 则是进行Cod ...

  8. FZU - 1901 Period II(kmp所有循环节)

    Problem Description For each prefix with length P of a given string S,if S[i]=S[i+P] for i in [0..SI ...

  9. Flask flask_script扩展库

    flask_script 1.安装:进入到虚拟环境中,pip install flask_script 2.flask_script 作用:可以通过命令行的形式来操作Flask,例如通过命令跑一个开发 ...

  10. ON DUPLICATE KEY UPDATE单个增加更新及批量增加更新的sql

    转: ON DUPLICATE KEY UPDATE单个增加更新及批量增加更新的sql 本文为博主原创,转载请注明出处. 在实际应用中,经常碰到导入数据的功能,当导入的数据不存在时则进行添加,有修改时 ...