Timus 1132 Square Root(二次剩余)
http://acm.timus.ru/problem.aspx?space=1&num=1132
题意:
求 x^2 ≡ n mod p p是质数 的 解
本题中n>=1
特判p=2,接下来求当p是奇素数时的解
引理1:
引理2:方程有解当且仅当
定理:
设a满足 不是模p的二次剩余,
即无解,
那么是二次剩余方程的解
#include<cstdio>
#include<cstdlib>
#include<algorithm> using namespace std; typedef long long LL; int w; struct T
{
int p,d;
}; int mod(LL a,int p)
{
a%=p;
if(a<) a+=p;
return a;
} int Pow(int a,int b,int p)
{
int res=;
for(;b;a=1LL*a*a%p,b>>=)
if(b&) res=1LL*res*a%p;
return res;
} //求勒让德符号
int Legendre(int a,int p)
{
return Pow(a,p->>,p);
} //二次域上的乘法
T mul(T a,T b,int p)
{
T ans;
ans.p=(1LL*a.p*b.p%p+1LL*a.d*b.d%p*w%p)%p;
ans.d=(1LL*a.p*b.d%p+1LL*a.d*b.p%p)%p;
return ans;
} //二次域上的快速幂
T power(T a,int b,int p)
{
T ans;
ans.p=;
ans.d=;
for(;b;a=mul(a,a,p),b>>=)
if(b&) ans=mul(ans,a,p);
return ans;
} int solve(int n,int p)
{
if(p==) return ;
if(Legendre(n,p)+==p) return -;
int a;
LL t;
while()
{
a=rand()%p;
t=1LL*a*a-n;
w=mod(t,p);
if(Legendre(w,p)+==p) break;
}
T tmp;
tmp.p=a;
tmp.d=;
T ans=power(tmp,p+>>,p);
return ans.p;
} int main()
{
int t;
scanf("%d",&t);
int n,p;
int a,b;
while(t--)
{
scanf("%d%d",&n,&p);
n%=p;
a=solve(n,p);
if(a==-)
{
puts("No root");
continue;
}
b=p-a;
if(a>b) swap(a,b);
if(a==b) printf("%d\n",a);
else printf("%d %d\n",a,b);
}
}
Timus 1132 Square Root(二次剩余)的更多相关文章
- Timus 1132 Square Root(二次剩余 解法2)
不理解,背板子 #include<cstdio> using namespace std; int Pow(int a,int b,int p) { ; ) ) res=1LL*a*res ...
- URAL 1132 Square Root(二次剩余定理)题解
题意: 求\(x^2 \equiv a \mod p\) 的所有整数解 思路: 二次剩余定理求解. 参考: 二次剩余Cipolla's algorithm学习笔记 板子: //二次剩余,p是奇质数 l ...
- Codeforces 715A. Plus and Square Root[数学构造]
A. Plus and Square Root time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- Project Euler 80:Square root digital expansion 平方根数字展开
Square root digital expansion It is well known that if the square root of a natural number is not an ...
- Codeforces 612E - Square Root of Permutation
E. Square Root of Permutation A permutation of length n is an array containing each integer from 1 t ...
- Codeforces 715A & 716C Plus and Square Root【数学规律】 (Codeforces Round #372 (Div. 2))
C. Plus and Square Root time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- (Problem 57)Square root convergents
It is possible to show that the square root of two can be expressed as an infinite continued fractio ...
- Square Root
Square RootWhen the square root functional configuration is selected, a simplified CORDIC algorithm ...
- Codeforces Round #372 (Div. 1) A. Plus and Square Root 数学题
A. Plus and Square Root 题目连接: http://codeforces.com/contest/715/problem/A Description ZS the Coder i ...
随机推荐
- Java归并排序的递归与非递归实现
该命题已有无数解释,备份修改后的代码 平均时间复杂度: O(NLogN) 以2为底 最好情况时间复杂度: O(NLogN) 最差情况时间复杂度: O(NLogN) 所需要额外空间: 递归:O(N + ...
- zabbix 常用监控模板
以下为常用的服务监控,可直接通过zabbix的导入功能导入,做基本修改就可以使用nginx监控模板 <?xml version="1.0" encoding="UT ...
- Dockerfile基础
Dockerfile基础Dockerfile分四部分组成: 基础镜像.维护者信息.镜像操作指令.启动时命令ps: 我的本地镜像已经有centos,若没有请使用docker pull centos 入门 ...
- hdu1394逆序数(线段树)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1394 题目大意:逆序数:即假设在数组a中,假如i<j,但是a[i]>a[j]. 现在有一个 ...
- Java面试题-基础知识
参考文章:Java面试题-基础知识 基础能力 什么是值传递和引用传递 线程状态有哪些,它们之间是如何转换的 进程与线程的区别,进程间如何通讯,线程间如何通讯? HashMap的数据结构是什么?如何实现 ...
- js 读取包含特殊字符的属性值
在JS中对象的属性可以通过两种方式访问:object.property和object["property"]. 包含特殊字符的属性只能以此方式访问: object["pr ...
- A1088. Rational Arithmetic
For two rational numbers, your task is to implement the basic arithmetics, that is, to calculate the ...
- T4 反射实体模型生成代码(Demo)
1.新建一个T4 Script <#@ template language="C#" debug="True" #> <#@ output ...
- Django 配置QQ邮箱连接
首先要在settings.py内进行配置 # 邮件服务配置文件 EMAIL_USE_SSL = True # 邮箱服务 EMAIL_HOST = 'smtp.qq.com' # 端口号 EMAIL_P ...
- Flask 自定义过滤器多个参数传入
非完整HTML文件: <div class="container" style="margin-top:50px;"> <div class= ...