前言

本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理。

作者: 数据森麟

PS:如有需要Python学习资料的小伙伴可以加点击下方链接自行获取

http://note.youdao.com/noteshare?id=3054cce4add8a909e784ad934f956cef

这两天偶然上网的时候,被知乎上一个名为“玉皇大帝住在平流层还是对流层”的问题吸引,本以为只是小打小闹,殊不知这个问题却在知乎上引发了强烈共鸣,浏览次数500W+,7000+关注:

数据来源

知乎非常“贴心”地专门有一个问题可以满足我们的需求,出人意料的是这个问题居然有243个回答,并且陶飞同学获得了3W+的赞同

我们从中爬取了所有回答中出现的问题链接,共用400多个问题,其中陶飞就提供了200+,在此向陶飞同学表示感谢,帮助我们构建了“沙雕数据库”,这部分代码如下:

 import re
import selenium
from selenium import webdriver
import requests
from bs4 import BeautifulSoup
import pandas as pd
import time

driver = webdriver.Chrome()
driver.maximize_window()

url = 'https://www.zhihu.com/question/37453271'
js='window.open("'+url+'")'
driver.execute_script(js)
driver.close()
driver.switch_to_window(driver.window_handles[0])
for i in range(100):
js="var q=document.documentElement.scrollTop=10000000"
driver.execute_script(js)

all_html = [k.get_property('innerHTML') for k in driver.find_elements_by_class_name('AnswerItem')]
all_text = ''.join(all_html)

#all_text = all_text.replace('\u002F','/')
all_text = all_text.replace('questions','question')
pat = 'question/\d+'
questions = list(set([k for k in re.findall(pat,all_text)]))

获得到了问题的对应的编号后,就可以去各自的页面获取各个问题对应的的标题、浏览数等信息,如下图所示:

这部分代码如下:

 header = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win32; x32; rv:54.0) Gecko/20100101 Firefox/54.0',
'Connection': 'keep-alive'}
cookies ='v=3; iuuid=1A6E888B4A4B29B16FBA1299108DBE9CDCB327A9713C232B36E4DB4FF222CF03; webp=true; ci=1%2C%E5%8C%97%E4%BA%AC; __guid=26581345.3954606544145667000.1530879049181.8303; _lxsdk_cuid=1646f808301c8-0a4e19f5421593-5d4e211f-100200-1646f808302c8; _lxsdk=1A6E888B4A4B29B16FBA1299108DBE9CDCB327A9713C232B36E4DB4FF222CF03; monitor_count=1; _lxsdk_s=16472ee89ec-de2-f91-ed0%7C%7C5; __mta=189118996.1530879050545.1530936763555.1530937843742.18'
cookie = {}
for line in cookies.split(';'):
name, value = cookies.strip().split('=', 1)
cookie[name] = value

questions_df = pd.DataFrame(columns = ['title','visit','follower','answer','is_open'])

for i in range(len(questions)):
try:
url = 'https://www.zhihu.com/'+questions[i]
html = requests.get(url,cookies=cookie, headers=header).content
bsObj = BeautifulSoup(html.decode('utf-8'),"html.parser")
text = str(bsObj)
title = bsObj.find('h1',attrs={'class':'QuestionHeader-title'}).text
visit = int(re.findall('"visitCount":\d+',text)[0].replace('"visitCount":',''))
follower = int(re.findall('"followerCount":\d+',text)[0].replace('"followerCount":',''))
answer = int(re.findall('"answerCount":\d+',text)[0].replace('"answerCount":',''))
is_open = int(len(re.findall('问题已关闭',text))==0)
questions_df = questions_df.append({'title':title,'visit':visit,
'follower':follower,'answer':answer,
'is_open':is_open},ignore_index=True)
time.sleep(2)
print(i)
except:
print('错误'+str(i))

数据分析

在分享出最终的“沙雕排行榜”前,我们首先严肃认真(lixinggongshi)的进行一波分析,主要看一下问题中的关键词,首先是所有词云的词云:

看来这些问题大多是源自于大家对于人生的探索,否则“为什么”,“如果”,“怎么办”也不会出现那么多,出人意料的是“体验”这个知乎专属tag居然并不多,可能是出于对知乎的尊重,和“体验”相关的问题都不会问得那么“沙雕”。

下面把这些助词去掉,再来看下结果:

这个图看来,读者关注的问题还是很极端,一方面在关注男女朋友“你冷酷、你无情、你无理取闹”这种问题,另一方面却在关注宇宙、地球这种关乎全人类的问题,很符合知乎“人均985,各个过百万”的人设。

这两个图实际上都是基于一个表情,不知道有没有看出来:

好吧,其实看不出来才是正常,能看出来的可能现在去知乎提个问题,下期就会上榜,最后把部分问题做出词云:

不知道大家能不能看清,说实话我自己是看不清的,也没准备让大家看清,目的就是引出下面真正的排行榜

沙雕问题排行榜

通过综合问题观看数,关注数,回答数,关注占比,回答占比,综合得到分数的流量指数和新奇指数,最终获得一个整体的分数,如下图所示:

听起来是不是很复杂,实际上最终还是通过90%10%的数据+10%90%的主观来进行了排名,为大家精选了15个最为“沙雕”的问题,

我用python爬取了知乎Top沙雕问题排行榜的更多相关文章

  1. python爬取中国知网部分论文信息

    爬取指定主题的论文,并以相关度排序. #!/usr/bin/python3 # -*- coding: utf-8 -*- import requests import linecache impor ...

  2. Python爬取中国知网文献、参考文献、引证文献

    前两天老师派了个活,让下载知网上根据高级搜索得到的来源文献的参考文献及引证文献数据,网上找了一些相关博客,感觉都不太合适,因此特此记录,希望对需要的人有帮助. 切入正题,先说这次需求,高级搜索,根据中 ...

  3. Python爬虫从入门到放弃(十八)之 Scrapy爬取所有知乎用户信息(上)

    爬取的思路 首先我们应该找到一个账号,这个账号被关注的人和关注的人都相对比较多的,就是下图中金字塔顶端的人,然后通过爬取这个账号的信息后,再爬取他关注的人和被关注的人的账号信息,然后爬取被关注人的账号 ...

  4. Python之爬虫(二十) Scrapy爬取所有知乎用户信息(上)

    爬取的思路 首先我们应该找到一个账号,这个账号被关注的人和关注的人都相对比较多的,就是下图中金字塔顶端的人,然后通过爬取这个账号的信息后,再爬取他关注的人和被关注的人的账号信息,然后爬取被关注人的账号 ...

  5. Python爬取网页信息

    Python爬取网页信息的步骤 以爬取英文名字网站(https://nameberry.com/)中每个名字的评论内容,包括英文名,用户名,评论的时间和评论的内容为例. 1.确认网址 在浏览器中输入初 ...

  6. 【Python爬虫案例】用Python爬取李子柒B站视频数据

    一.视频数据结果 今天是2021.12.7号,前几天用python爬取了李子柒的油管评论并做了数据分析,可移步至: https://www.cnblogs.com/mashukui/p/1622025 ...

  7. Python 爬取所有51VOA网站的Learn a words文本及mp3音频

    Python 爬取所有51VOA网站的Learn a words文本及mp3音频 #!/usr/bin/env python # -*- coding: utf-8 -*- #Python 爬取所有5 ...

  8. python爬取网站数据

    开学前接了一个任务,内容是从网上爬取特定属性的数据.正好之前学了python,练练手. 编码问题 因为涉及到中文,所以必然地涉及到了编码的问题,这一次借这个机会算是彻底搞清楚了. 问题要从文字的编码讲 ...

  9. python爬取某个网页的图片-如百度贴吧

    python爬取某个网页的图片-如百度贴吧 作者:vpoet mail:vpoet_sir@163.com 注:随意copy,不用告诉我 #coding:utf-8 import urllib imp ...

随机推荐

  1. PAT 1005 Spell It Right 字符串处理

    Given a non-negative integer N, your task is to compute the sum of all the digits of N, and output e ...

  2. Blazor入坑指南

    一 为什么用Blazor 原本就是后端程序员, 技术栈基于C#, 懂一点前端jQuery/Html 不管是webAssembly还是ServerSide, 就是想方便地做单页应用, 能wasm自然更好 ...

  3. python文件夹遍历,文件操作,获取文件修改创建时间

    在Python中,文件操作主要来自os模块,主要方法如下: os.listdir(dirname):列出dirname下的目录和文件os.getcwd():获得当前工作目录os.curdir:返回当前 ...

  4. javaWeb核心技术第四篇之Javascript第二篇事件和正则表达式

    - 事件 - 表单提交(掌握) "onsubmit" - 单击事件(掌握) "onclick" - 页面加载成功事件(掌握) "onload" ...

  5. Thymeleaf常用语法:表达式语法之运算符

    Thymeleaf表达式语法之常量分为字符串常量.数字常量.布尔值常量.空值常量:运算符分为算术运算符.关系运算符.条件运算符.无操作符. 开发环境:IntelliJ IDEA 2019.2.2Spr ...

  6. Saltstack_实战指南02_各主机Pillar信息指定

    1. 实战项目GitHub地址 该项目已经放在了GitHub上,地址如下: https://github.com/zhanglianghhh/salt-example-lnmp 2. 主机规划 3. ...

  7. webpack打包 The 'mode' option has not been set, webpack will fallback to

    webpack 打包报错 The 'mode' option has not been set, webpack will fallback to 'production' for,Module no ...

  8. deepin安装nginx失败记录

    问题描述 在deepin系统中,apt install nginx 返回信息报错: nginx 依赖于 nginx-full (<< 1.10.3-1+deb9u2.1~) | nginx ...

  9. Centos7更新阿里云的yum源

    1.进入yum文件夹 cd /etc/yum.repos.d/ 2.下载阿里云源 wget "http://mirrors.aliyun.com/repo/Centos-7.repo&quo ...

  10. 洛谷 P5640 【CSGRound2】逐梦者的初心

    洛谷 P5640 [CSGRound2]逐梦者的初心 洛谷传送门 题目背景 注意:本题时限修改至250ms,并且数据进行大幅度加强.本题强制开启O2优化,并且不再重测,请大家自己重新提交. 由于Y校的 ...