Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) F. Tree Factory 构造题
F. Tree Factory
Bytelandian Tree Factory produces trees for all kinds of industrial applications. You have been tasked with optimizing the production of a certain type of tree for an especially large and important order.
The tree in question is a rooted tree with n vertices labelled with distinct integers from 0 to n−1. The vertex labelled 0 is the root of the tree, and for any non-root vertex v the label of its parent p(v) is less than the label of v.
All trees at the factory are made from bamboo blanks. A bamboo is a rooted tree such that each vertex has exactly one child, except for a single leaf vertex with no children. The vertices of a bamboo blank can be labelled arbitrarily before its processing is started.
To process a bamboo into another tree a single type of operation can be made: choose an arbitrary non-root vertex v such that its parent p(v) is not a root either. The operation consists of changing the parent of v to its parent's parent p(p(v)). Note that parents of all other vertices remain unchanged, in particular, the subtree of v does not change.
Efficiency is crucial, hence you have to minimize the number of operations to make the desired tree from a bamboo blank. Construct any optimal sequence of operations to produce the desired tree.
Note that the labelling of the resulting tree has to coincide with the labelling of the desired tree. Formally, the labels of the roots have to be equal, and for non-root vertices with the same label the labels of their parents should be the same.
It is guaranteed that for any test present in this problem an answer exists, and further, an optimal sequence contains at most 106 operations. Note that any hack that does not meet these conditions will be invalid.
Input
The first line contains a single integer n — the number of vertices in the tree (2≤n≤105).
The second line contains n−1 integers p(1),…,p(n−1) — indices of parent vertices of 1,…,n−1 respectively (0≤p(i)<i).
Output
In the first line, print n distinct integers id1,…,idn — the initial labelling of the bamboo blank starting from the root vertex (0≤idi<n).
In the second line, print a single integer k — the number of operations in your sequence (0≤k≤106).
In the third line print k integers v1,…,vk describing operations in order. The i-th operation consists of changing p(vi) to p(p(vi)). Each operation should be valid, i.e. neither vi nor p(vi) can be the root of the tree at the moment.
Examples
input
5
0 0 1 1
output
0 2 1 4 3
2
1 3
input
4
0 1 2
output
0 1 2 3
0
题意
现在有一个链,然后每次操作可以使得fa[x]=fa[fa[x]],就是使得自己的爷爷变成自己的父亲。然后操作若干次,就会变成一颗树。
现在题目给你一个根为0的树,说这个是由一条链操作得到的,让你还原这条链的样子,并输出方案,要求操作次数最少。
题解
我们把操作转换一下,其实就是使得一个子树的父亲,变成自己的兄弟。
我们手动模拟一下,可以发现,树链的长度是一定的,我们如果让深度大于等于他的子树插进去的话,那么深度肯定会+1的,于是我们就每次插入深度大于等于他的就好了。
代码
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e5+7;
int fa[maxn],mx[maxn],n;
vector<int>son[maxn];
vector<int>order;
bool cmp(int x,int y){
return mx[x]<mx[y];
}
void dfs1(int x){
for(int i=0;i<son[x].size();i++){
dfs1(son[x][i]);
mx[x]=max(mx[x],mx[son[x][i]]+1);
}
sort(son[x].begin(),son[x].end(),cmp);
}
void dfs2(int x){
cout<<x<<" ";
for(int i=0;i<son[x].size();i++){
dfs2(son[x][i]);
if(i==0)continue;
for(int j=0;j<=mx[son[x][i-1]];j++){
order.push_back(son[x][i]);
}
}
}
int main(){
scanf("%d",&n);
for(int i=1;i<n;i++){
scanf("%d",&fa[i]);
son[fa[i]].push_back(i);
}
dfs1(0);
dfs2(0);
cout<<endl;
cout<<order.size()<<endl;
for(int i=0;i<order.size();i++){
cout<<order[i]<<" ";
}
cout<<endl;
}
Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) F. Tree Factory 构造题的更多相关文章
- Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2)
A - Forgetting Things 题意:给 \(a,b\) 两个数字的开头数字(1~9),求使得等式 \(a=b-1\) 成立的一组 \(a,b\) ,无解输出-1. 题解:很显然只有 \( ...
- Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) D. Power Products
链接: https://codeforces.com/contest/1247/problem/D 题意: You are given n positive integers a1,-,an, and ...
- Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) C. p-binary
链接: https://codeforces.com/contest/1247/problem/C 题意: Vasya will fancy any number as long as it is a ...
- Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) B2. TV Subscriptions (Hard Version)
链接: https://codeforces.com/contest/1247/problem/B2 题意: The only difference between easy and hard ver ...
- Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) A. Forgetting Things
链接: https://codeforces.com/contest/1247/problem/A 题意: Kolya is very absent-minded. Today his math te ...
- Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) E. Rock Is Push dp
E. Rock Is Push You are at the top left cell (1,1) of an n×m labyrinth. Your goal is to get to the b ...
- Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) B. TV Subscriptions 尺取法
B2. TV Subscriptions (Hard Version) The only difference between easy and hard versions is constraint ...
- Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) A. Forgetting Things 水题
A. Forgetting Things Kolya is very absent-minded. Today his math teacher asked him to solve a simple ...
- Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) D. Power Products 数学 暴力
D. Power Products You are given n positive integers a1,-,an, and an integer k≥2. Count the number of ...
随机推荐
- Python爬虫大作业
一.题目: 获取并保存目标网站的下图所示的所有英文名,网页转换通过点击more names刷新名字并将各个英文名子目录下,去获取并保存每一个英文名的名字.性别.寓意.简介如下图所示内容红色标记框内的内 ...
- 前端笔记之React(七)redux-saga&Dva&路由
一.redux-saga解决异步 redux-thunk 和 redux-saga 使用redux它们是必选的,二选一,它们两个都可以很好的实现一些复杂情况下redux,本质都是为了解决异步actio ...
- 如何使用numpy实现一个全连接神经网络?(上)
全连接神经网络的概念我就不介绍了,对这个不是很了解的朋友,可以移步其他博主的关于神经网络的文章,这里只介绍我使用基本工具实现全连接神经网络的方法. 所用工具: numpy == 1.16.4 matp ...
- MySQL属性SQL_MODE学习笔记
最近在学习<MySQL技术内幕:SQL编程>并做了笔记,本博客是一篇笔记类型博客,分享出来,方便自己以后复习,也可以帮助其他人 SQL_MODE:MySQL特有的一个属性,用途很广,可以通 ...
- VSCode 开发插件 推荐
VSCode 必装的 10 个高效开发插件 本文介绍了目前前端开发最受欢迎的开发工具 VSCode 必装的 10 个开发插件,用于大大提高软件开发的效率. VSCode 的基本使用可以参考我的原创视 ...
- Kubernetes容器日志收集
日志采集方式 日志从传统方式演进到容器方式的过程就不详细讲了,可以参考一下这篇文章Docker日志收集最佳实践,由于容器的漂移.自动伸缩等特性,日志收集也就必须使用新的方式来实现,Kubernetes ...
- MongoDB 修改数据Cannot change the size of a document in a capped collection: * != *"
MongoDB修改数据库数据的时候报错 原因: 集合被设置成了 固定集合 .固定集合的数据不能被修改.只能查找-删除-再插入,也就是创建集合的时候设置了capped参数为true 解决: 创建集合的时 ...
- 用友的SPS定义
基于标准产品的支持服务(Standard Product Support,SPS).主要包括:更新升级(软件补丁更新与产品升级).问题解决(产品问题在线或热线解析).知识转移(用友到客户的知识传递). ...
- 禁止页面被复制和禁止右键,一段样式一段JS就行了,无需复杂设定!
群里小伙伴经常问怎么禁止页面复制和右键,其实这个问题百度一下是很多资料的,我估计小伙伴都懒,所以这里统一回复下: 找到模板里面的</head>,在上面加如下代码就行了 <style ...
- Vue介绍以及模板语法-插值
1.Vue的介绍 Vue是一套用于构建用户界面的渐进式框架. 注意:Vue是一个框架,相对于jq库来说,是由本质的区别的:https://cn.vuejs.org/ Vue不支持IE8及一下版本,因为 ...