Paper | Blind Quality Assessment Based on Pseudo-Reference Image
这一篇应该是继《BLIND QUALITY ASSESSMENT OF COMPRESSED IMAGES VIA PSEUDO STRUCTURAL SIMILARITY》(2016 ICME)之后的拓展工作。后者是将压缩图像再压缩,比较二者伪结构(压缩块角)的相似度;而本文就是将方法一般化,产生了伪参考图像的概念。
建议先看那篇短文,再看本文。本文只记录扩展部分的精华。
【实际上,这种思想并不是作者的首创。在去模糊等领域,这种思想被广泛使用[5,6]】
本文称伪参考图像为pseudo-reference image(PRI),基于PRI的盲IQA方法为PRI-based BIQA。
本文考虑三种失真:块效应,模糊和噪声。
1. 技术细节
要注意的是,每一种失真很不一样,因此我们需要设计distortion-specific PRI以及对应的测距方法。
对于块效应,我们先对压缩图像进一步强压缩,然后寻找各自的伪结构,最后计算二者伪结构的相似度(PSS),即最终得分。
对于模糊和噪声,它们都会改变图像的局部结构:平坦区域可能因为噪声变得有纹理,而纹理区域可能因为模糊变得平滑。因此我们测量的是局部结构相似度(local structure similarity, LSS)。具体是借助local binary pattern(LBP)[8]来刻画局部结构。
1.1 失真识别
借助DIIVINE[7]的识别方法。只有此步需要训练。
1.2 得到对应的PRI并评估质量
块效应
我们先说块效应。流程与ICME大致相同,不同点:
计算PSS时分母上加1,以保证数值稳定性。
检测角使用MATLAB的最小特征值法[43]。质量阈值很小,设为0.001。
在处理图像前,先用\(3 \times 3\)标准差为0.5的高斯滤波器滤波。
模糊和噪声
我们再说模糊和噪声指标——LSS。
模糊图像和有噪图像的PRI分别是:
得到PRI以后,我们要用LBP来表征PRI和原图各自的局部结构。LBP记录的是某个像素和其圆形邻域内像素的亮度值的差值,并且以二值化形式编码记录:
得到LBP之后,我们再处理一步:
上面是对模糊LBP的处理,下面是对有噪LBP的处理。
最后,我们遵循与块效应相同的步骤,计算相似度即可。
效果:
质量越差(DMOS小),重合越多(白色区域占比大),得分越高(LSS得分高)。
1.3 扩展为通用的质量评价指标——BPRI
有上面那些是不够的。如果一张图像里存在多种失真耦合,那么以上流程和指标都没法用。为此,我们将方法拓展。
归一化3种质量评分
首先,我们要让PSS和两个LSS处于相近的区间,即归一化。方法就是用100张图像(4种失真类型和5种失真尺度,共2000张),拟合各自的模型:
\[
q' = \lambda_1 (\frac{1}{2} - \frac{1}{1 + \exp \lambda_2 (q - \lambda_3)}) + \lambda_4 q + \lambda_5
\]
这样,3个得分都会在0和1之间波动。拟合对象为FR方法GMSD[49]。
判断失真类型
这里作者使用了SVM作为分类器。输入即3个归一化前的质量评分组成的1个3维向量,输出也是3维向量,表征3种失真的概率。
加权求和
概率和归一化后的得分加权求和,即最终得分。
实验略。
2. 总结
优点:
We solve the problem of IQA by measuring "how much worse the image could be?" rather than the traditional "how bad the image is?".
缺点:
存在大量手工设计的参数。调起来甚是麻烦。
很难处理耦合失真。
失真类型有限。每加入一种失真类型,就需要训练一个SVM,拟合一个归一化模型,定义一个PRI。
Paper | Blind Quality Assessment Based on Pseudo-Reference Image的更多相关文章
- Paper | BLIND QUALITY ASSESSMENT OF COMPRESSED IMAGES VIA PSEUDO STRUCTURAL SIMILARITY
目录 1. 技术细节 1.1 得到MDI 1.2 判别伪结构,计算伪结构相似性 2. 实验 动机:作者认为,基于块的压缩会产生一种伪结构(pseudo structures),并且不同程度压缩产生的伪 ...
- Paper | No-reference Quality Assessment of Deblocked Images
目录 故事背景 本文方法(DBIQ) 发表在2016年Neurocomputing. 摘要 JPEG is the most commonly used image compression stand ...
- [论文笔记] Methodologies for Data Quality Assessment and Improvement (ACM Comput.Surv, 2009) (1)
Carlo Batini, Cinzia Cappiello, Chiara Francalanci, and Andrea Maurino. 2009. Methodologies for data ...
- Troubleshooting routing topology based on a reference topology
In one embodiment, a computing device (e.g., border router or network management server) transmits a ...
- Paper | Quality assessment of deblocked images
目录 1. 故事 2. 失真变化 3. 方法(PSNR-B) 4. 实验 这篇文章提出了一个PSNR-B指标,旨在衡量 压缩图像的块效应强度 或 去块效应后的残留块效应强度(比较去块效应算法的优劣). ...
- [论文笔记] Methodologies for Data Quality Assessment and Improvement (ACM Comput.Surv, 2009) (2)
本篇博文主要对DMQ(S3.7)的分类进行了研读. 1. 这个章节提出了一种DQM的分类法(如下图) 由上图可见,该分类法的分类标准是对assessment & improvement阶段的支 ...
- Quality assessment and quality control of NGS data
http://www.molecularevolution.org/resources/activities/QC_of_NGS_data_activity_new table of contents ...
- Paper | D3: Deep Dual-Domain Based Fast Restoration of JPEG-Compressed Images
目录 摘要 读后感 故事 深度双域法(D3) 发表于2016年CVPR. 摘要 既利用了CNN,又考虑了JPEG压缩的特性,解决JPEG图像去失真问题. 针对于压缩特性,作者考虑了JPEG压缩方案的先 ...
- {Reship}{Code}{CV}
UIUC的Jia-Bin Huang同学收集了很多计算机视觉方面的代码,链接如下: https://netfiles.uiuc.edu/jbhuang1/www/resources/vision/in ...
随机推荐
- 使用composer安装Larave提示“Changed current directory to C:/Users/Administrator/AppData/Roaming/Composer”
解决办法: 根据官方手册执行composer global require "laravel/installer" 显示Changed current directory to C ...
- Java数组拷贝的五种方法
在Java中有多种方法可以拷贝一个数组,到另外一个数组. 1.循环拷贝 在循环拷贝方法中,只需要利用i,移动指针即可复制所有数组到arrayB中. for(int i=0;i<arrayA.le ...
- 在windows系统上面部署springboot项目并设置其开机启动
前言 最近的项目需要在客户的服务器上面部署一个项目然后进行测试,服务器的系统是windows server2008的,以前部署的项目都是在linux系统上面居多,就算是在windows系统上面自己玩的 ...
- Vant ui
轻量.可靠的移动端 Vue 组件库 https://youzan.github.io/vant/#/zh-CN/intro postcss-pxtorem vue:将px转化为rem,适配移动端van ...
- idea整合svn
如果遇到找不到svn.exe的情况.可以重新运行svn的安装程序.勾选上svn的安装.
- Z从壹开始前后端分离【 .NET Core2.0/3.0 +Vue2.0 】框架之三 || Swagger的使用 3.1
本文梯子 本文3.0版本文章 常见问题 1.Bug调试 2.经常有小伙伴遇到这个错误 3.路由重载 一.为什么使用Swagger 二.配置Swagger服务 1.引用Nuget包 2.配置服务 3.启 ...
- PHP常见循环例题
以下的每道题都没有固定的写法,可以使看的人更好的理解 1.通过for循环将数组中值求和.求平均值 <?php //1.求数组的和.平均值 $num=[1,20,53,23,14,12,15]; ...
- LinuxShell脚本——变量和数据类型
LinuxShell脚本——变量和数据类型 摘要:本文主要学习了Shell脚本中的变量和数据类型. 变量 定义变量的语法 定义变量时,变量名和变量值之间使用“=”分隔,并且等号两边不能有空格: 变量名 ...
- HTTP面试常见题
1.HTTP2.0.1.1.1.0.0.9的区别? 答:HTTP0.9:是HTTP协议的第一个版本,只允许发送get请求,并且不支持请求头.一次请求对应一次响应.是短连接. HTTP1.0:相比于0. ...
- 易优CMS:arcview的基础用法
[基础用法] 名称:arcview 功能:获取单条文档数据 语法: {eyou:arcview aid='文档ID'} <a href="{$field.arcurl}"&g ...