bzoj

洛谷

题意:

现在有\(a,b,c\)三种车,每个赛道可能会存在限制:\(a\)表示不能选择\(a\)类型的赛车,\(b,c\)同理;\(x\)表示该赛道不受限制,但\(x\)类型的个数$$d\leq 8\(。
同时赛道之间还存在\)m\(条关系,每个关系用\)(i\ h_i\ j\ h_j)\(表示,意味着若在第\)i\(个赛道选择\)h_i\(类的车,则必须在\)j\(赛道选择\)h_j\(类的车。
现在问是否存在一种合法安排赛车的方案,有则任意输出一种方案,没有则输出\)-1$。

思路:

  • \(x\)类赛道个数较少,我们先不考虑其存在,那么问题变为了一个存在一些限制条件的\(2-sat\)问题,我们先来解决这个问题。
  • 对于合法的限制,直接连边即可;若\(i\)赛道不能有\(h_i\),因为我们本来就不考虑\(h_i\)的存在(2-sat问题),那么我们直接无视当前的限制;若\(j\)赛道不能有\(h_j\),此时表示不能选\(h_i\),那么连边\(h_i\rightarrow h_i'\)即可。
  • 然后考虑\(x\)类赛道,因为个数很少,所以我们可以直接\(3^d\)枚举选择哪些情况,复杂度变为\(O(3^dn)\)。
  • 然后这里有个特别巧妙的想法,就是正难则反,我们考虑枚举不选哪个,那么\(x\)类赛道也变成了某类具体的赛道。首先问题处理上方便了许多,统一为\(2-sat\)问题;其次,复杂度将为\(2^d\),因为假设我们当前不选\(a\),那么可以选择\(b,c\),不选\(b\),那么可以选择\(a,c\),这样可以覆盖所有的情况了。

所以通过\(2^d\)枚举,问题转换为了一个带限制\(2-sat\)问题。感觉还是挺巧妙的,上午有点累没好好想,可惜了QAQ

代码如下:

/*
* Author: heyuhhh
* Created Time: 2019/12/2 11:21:16
*/
#include <iostream>
#include <algorithm>
#include <cstring>
#include <vector>
#include <cmath>
#include <set>
#include <map>
#include <queue>
#include <iomanip>
#define MP make_pair
#define fi first
#define se second
#define sz(x) (int)(x).size()
#define all(x) (x).begin(), (x).end()
#define INF 0x3f3f3f3f
#define Local
#ifdef Local
#define dbg(args...) do { cout << #args << " -> "; err(args); } while (0)
void err() { std::cout << '\n'; }
template<typename T, typename...Args>
void err(T a, Args...args) { std::cout << a << ' '; err(args...); }
#else
#define dbg(...)
#endif
void pt() {std::cout << '\n'; }
template<typename T, typename...Args>
void pt(T a, Args...args) {std::cout << a << ' '; pt(args...); }
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
//head
const int N = 1e5 + 5, M = 1e5 + 5; int n, m, d;
char s[N], t[N];
int pos[N], tot;
char x[N]; struct Edge {
int i, j;
char pi, pj;
}e[M]; vector<int> G[N], rG[N], vs;
int used[N], bel[N]; void adde(int from, int to) {
G[from].push_back(to);
rG[to].push_back(from);
} void dfs(int v) {
used[v] = true;
for(int u: G[v]) {
if(!used[u])
dfs(u);
}
vs.push_back(v);
} void rdfs(int v, int k) {
used[v] = true;
bel[v] = k;
for(int u: rG[v])
if(!used[u])
rdfs(u, k);
} int scc() {
memset(used, 0, sizeof(used));
vs.clear();
for(int v = 1; v <= 2 * n; ++v)
if(!used[v]) dfs(v);
memset(used, 0, sizeof(used));
int k = 0;
for(int i = (int) vs.size() - 1; i >= 0; --i)
if(!used[vs[i]]) rdfs(vs[i], k++);
return k;
} void work() {
for(int i = 1; i <= 2 * n; i++) G[i].clear(), rG[i].clear();
for(int i = 1; i <= n; i++) {
if(t[i] == 'a') {
x[i] = 'b';
x[i + n] = 'c';
} else if(t[i] == 'b') {
x[i] = 'a';
x[i + n] = 'c';
} else {
x[i] = 'a';
x[i + n] = 'b';
}
}
for(int i = 1; i <= m; i++) {
int u = e[i].i, v = e[i].j;
char pi = e[i].pi, pj = e[i].pj;
if(t[u] == pi) continue;
if(t[v] == pj) {
if(x[u] == pi) adde(u, u + n);
else adde(u + n, u);
} else {
if(x[u] == pi) {
if(x[v] == pj) adde(u, v), adde(v + n, u + n);
else adde(u, v + n), adde(v, u + n);
} else {
if(x[v] == pj) adde(u + n, v), adde(v + n, u);
else adde(u + n, v + n), adde(v, u);
}
}
}
scc();
for(int i = 1; i <= n; i++) {
if(bel[i] == bel[i + n]) return;
}
for(int i = 1; i <= n; i++) {
if(bel[i] > bel[i + n]) {
printf("%c", x[i] - 'a' + 'A');
} else printf("%c", x[i + n] - 'a' + 'A');
}
cout << '\n';
exit(0);
} void go(int cur) {
if(cur > tot) {
work(); return;
}
t[pos[cur]] = 'a'; go(cur + 1);
t[pos[cur]] = 'b'; go(cur + 1);
} void run(){
scanf("%s", s + 1);
for(int i = 1; i <= n; i++) {
t[i] = s[i];
if(s[i] == 'x') pos[++tot] = i;
}
cin >> m;
for(int i = 1; i <= m; i++) {
int u, v;
char pi, pj;
scanf("%d %c %d %c", &u, &pi, &v, &pj);
pi = pi - 'A' + 'a';
pj = pj - 'A' + 'a';
e[i] = Edge {u, v, pi, pj};
}
go(1);
cout << -1 << '\n';
} int main() {
while(cin >> n >> d) run();
return 0;
}

【bzoj4945】[Noi2017]游戏(搜索+2-sat)的更多相关文章

  1. BZOJ 4945 NOI2017 游戏 搜索+2-SAT

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4945 分析: 首先考虑没有x的情况,发现有一个明显的推理模型,容易看出来可以用2-SAT ...

  2. [BZOJ4945][Noi2017]游戏 2-sat

    对于所有的x,我们枚举他的地图类型,事实上我们只需要枚举前两种地形就可以覆盖所有的情况. 之后就变成了裸的2-sat问题. 对于一个限制,我们分类讨论: 1.h[u]不可选,跳过 2.h[v]不可选, ...

  3. [bzoj4945][Noi2017]游戏

    题目大意:有$n$个位置,有三种数,每个位置只可以填一种数,$d(d\leqslant8)$个位置有三种选择,其他位置只有两种选择.有一些限制,表示第$i$个位置选了某种数,那么第$j$个位置就只能选 ...

  4. 【BZOJ4945】[Noi2017]游戏 2-SAT

    [BZOJ4945][Noi2017]游戏 题目描述 题解:2-SAT学艺不精啊! 这题一打眼看上去是个3-SAT?哎?3-SAT不是NPC吗?哎?这题x怎么只有8个?暴力走起! 因为x要么不是A要么 ...

  5. P3825 [NOI2017]游戏

    题目 P3825 [NOI2017]游戏 做法 \(x\)地图外的地图好做,模型:\((x,y)\)必须同时选\(x \rightarrow y,y^\prime \rightarrow x^\pri ...

  6. [Luogu P3825] [NOI2017] 游戏 (2-SAT)

    [Luogu P3825] [NOI2017] 游戏 (2-SAT) 题面 题面较长,略 分析 看到这些约束,应该想到这是类似2-SAT的问题.但是x地图很麻烦,因为k-SAT问题在k>2的时候 ...

  7. 并不对劲的bzoj4945:loj2305:uoj317:p3825[NOI2017]游戏

    题目大意 2-SAT,其中有\(d\)(\(d\leq 8\))个点是\(3-SAT\). 题解 枚举\(d\)个点不取三个中(假设三个为\(a,b,c\))的哪一个,然后整体变成做\(2-SAT\) ...

  8. BZOJ4945 & 洛谷3825 & UOJ317:[NOI2017]游戏——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4945 https://www.luogu.org/problemnew/show/P3825 ht ...

  9. NOIp 2011 mayan游戏 搜索

    题目描述 Mayan puzzle是最近流行起来的一个游戏.游戏界面是一个 7 行5 列的棋盘,上面堆放着一些方块,方块不能悬空堆放,即方块必须放在最下面一行,或者放在其他方块之上.游戏通关是指在规定 ...

随机推荐

  1. SpringMVC的工作流程?Mybatis和hibernate区别?

    SpringMVC的工作流程?1. 用户发送请求至前端控制器DispatcherServlet2. DispatcherServlet收到请求调用HandlerMapping处理器映射器.3. 处理器 ...

  2. JVM运行时数据区-详细结构图

  3. [转]Python十个高大上的语法

    Python 是一种代表简单思想的语言,其语法相对简单,很容易上手.不过,如果就此小视 Python 语法的精妙和深邃,那就大错特错了.本文精心筛选了最能展现 Python 语法之精妙的十个知识点,并 ...

  4. 利用 OpenCC 工具进行文字的简繁转换

    前言 近日在公司遇到一个需求,因为准备要推出海外版产品,所以需要将所有的简体文字转换为繁体文字.一开始是改了表面的文字,但是后面发现很多提示语也需要去改,所以找了一个工具去对所有 .m 文件进行批量文 ...

  5. 追踪SQL Server执行delete操作时候不同锁申请与释放的过程

    一直以为很了解sqlserver的加锁过程,在分析一些特殊情况下的死锁之后,尤其是并发单表操作发生的死锁,对于加解锁的过程,有了一些重新的认识,之前的知识还是有一些盲区在里面的.delete加锁与解锁 ...

  6. 【转】#define 定义别名和 typedef 声明类型的区别

    下面一段程序的执行结果是: #include <stdio.h>#define CHAR2 char*int main(){    typedef char* CHAR;    CHAR ...

  7. 一条简单的更新语句,MySQL是如何加锁的?

    看如下一条sql语句: # table T (id )) delete : MySQL在执行的过程中,是如何加锁呢? 在看下面这条语句: : 那这条语句呢?其实这其中包含太多知识点了.要回答这两个问题 ...

  8. OAuthon2.0机制详解

    最近在忙企业微信和钉钉的第三方应用开发,需要获取一些信息,第一个就是这个OAuthon2.0,先详细了解下概念和流程 一.应用场景 我们要想用第三方播放器播放你的云盘账号里面的一些秘密视频资源,为了要 ...

  9. getattribute方法,Python属性访问拦截器的用法

    __getattribute__()方法是属性访问时的拦截器,每当访问属性的时候,会先执行这个方法,然后再执行访问属性的操作步骤,可以用来记录属性访问的log.代码示例如下:   class Itca ...

  10. 数组类的创建——DynamicArray.h

    完成DynamicArray类的具体实现 DynamicArray设计要点——类模板 动态确定内部数组空间的大小 实现函数返回数组长度 拷贝构造和赋值操作 DynamicArray类的声明 templ ...