题目描述

在数轴上有 n个闭区间 [l1,r1],[l2,r2],...,[ln,rn]。现在要从中选出 m 个区间,使得这 m个区间共同包含至少一个位置。换句话说,就是使得存在一个 x,使得对于每一个被选中的区间 [li,ri],都有 li≤x≤ri。

对于一个合法的选取方案,它的花费为被选中的最长区间长度减去被选中的最短区间长度。区间 [li,ri] 的长度定义为 ri−li,即等于它的右端点的值减去左端点的值。

求所有合法方案中最小的花费。如果不存在合法的方案,输出 −1

输入描述:

第一行包含两个正整数 n,m用空格隔开,意义如上文所述。保证 1≤m≤n

接下来 n行,每行表示一个区间,包含用空格隔开的两个整数 li 和 ri 为该区间的左右端点。

N<=500000,M<=200000,0≤li≤ri≤10^9

输出描述:

只有一行,包含一个正整数,即最小花费。


按照区间长度排序,把区间端点离散化.

这样做不影响答案,我们也可以更加方便处理

线段树区间维护最大值就解决了

#include<cstdio>
#include<vector>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int N=1e6+10,inf=1<<30;
#define int long long
#define ls (p<<1)
#define rs (p<<1)|1
struct node{
int l,r,sum,add;
#define l(x) tree[x].l
#define r(x) tree[x].r
#define sum(x) tree[x].sum
#define add(x) tree[x].add
}tree[4*N];
#define mid ((l(p)+r(p))>>1)
inline void pushdown(int p){
add(ls)+=add(p);
add(rs)+=add(p);
sum(ls)+=add(p);
sum(rs)+=add(p);
add(p)=0;
}
inline void build(int p,int l,int r){
l(p)=l,r(p)=r;
if(l==r)return;
build(ls,l,mid);
build(rs,mid+1,r);
}
inline int ask(int p,int l,int r){
if(l<=l(p)&&r(p)<=r)return sum(p);
int ans=0;
if(add(p))pushdown(p);
if(l<=mid)ans=max(ans,ask(ls,l,r));
if(r>mid)ans=max(ans,ask(rs,l,r));
return ans;
}
inline void change(int p,int l,int r,int d){
if(l<=l(p)&&r(p)<=r){sum(p)+=d;add(p)+=d;return;}
if(add(p))pushdown(p);
if(l<=mid)change(ls,l,r,d);
if(r>mid)change(rs,l,r,d);
sum(p)=max(sum(ls),sum(rs));
}
struct E{
int l,r,len;
}e[N];
bool cmp(E t1,E t2){return t1.len<t2.len;}
int A[N],n,m;
signed main(){
cin>>n>>m;
for(int i=1;i<=n;i++){
scanf("%lld%lld",&e[i].l,&e[i].r);
e[i].len=e[i].r-e[i].l;
A[i]=e[i].l;
A[i+n]=e[i].r;
}
sort(A+1,A+1+2*n);sort(e+1,e+1+n,cmp);
int len=unique(A+1,A+1+2*n)-A-1;
for(int i=1;i<=n;i++){
e[i].l=lower_bound(A+1,A+1+len,e[i].l)-A;
e[i].r=lower_bound(A+1,A+1+len,e[i].r)-A;
}
build(1,1,2*n);
int l=1,r=0,ans=inf;
while(r<n){
while(r<n&&sum(1)<m){++r;change(1,e[r].l,e[r].r,1);}
if(sum(1)<m)break;int tmp;
while(sum(1)>=m)tmp=e[l].len,change(1,e[l].l,e[l].r,-1),++l;
ans=min(ans,e[r].len-tmp);
}
printf("%lld\n",ans==inf?-1:ans);
}

luogu P1712 [NOI2016]区间的更多相关文章

  1. Luogu P1712 [NOI2016]区间(线段树)

    P1712 [NOI2016]区间 题意 题目描述 在数轴上有 \(N\) 个闭区间 \([l_1,r_1],[l_2,r_2],...,[l_n,r_n]\) .现在要从中选出 \(M\) 个区间, ...

  2. luogu P1712 [NOI2016]区间 贪心 尺取法 线段树 二分

    LINK:区间 没想到尺取法. 先说暴力 可以发现答案一定可以转换到端点处 所以在每个端点从小到大扫描线段就能得到答案 复杂度\(n\cdot m\) 再说我的做法 想到了二分 可以进行二分答案 从左 ...

  3. 【题解】P1712 [NOI2016]区间(贪心+线段树)

    [题解]P1712 [NOI2016]区间(贪心+线段树) 一个observe是,对于一个合法的方案,将其线段长度按照从大到小排序后,他极差的来源是第一个和最后一个.或者说,读入的线段按照长度分类后, ...

  4. 洛谷P1712 [NOI2016]区间 尺取法+线段树+离散化

    洛谷P1712 [NOI2016]区间 noi2016第一题(大概是签到题吧,可我还是不会) 链接在这里 题面可以看链接: 先看题意 这么大的l,r,先来个离散化 很容易,我们可以想到一个结论 假设一 ...

  5. P1712 [NOI2016]区间

    题目描述 在数轴上有 NN 个闭区间 [l_1,r_1],[l_2,r_2],...,[l_n,r_n][l1​,r1​],[l2​,r2​],...,[ln​,rn​] .现在要从中选出 MM 个区 ...

  6. 洛谷 P1712 [NOI2016]区间(线段树)

    传送门 考虑将所有的区间按长度排序 考虑怎么判断点被多少区间覆盖,这个可以离散化之后用一棵权值线段树来搞 然后维护两个指针$l,r$,当被覆盖次数最多的点的覆盖次数小于$m$时不断右移$r$,在覆盖次 ...

  7. 并不对劲的bzoj4651:loj2086:uoj222:p1712:[NOI2016]区间

    题目大意 有\(n\)(\(n\leq 5*10^5\))个闭区间\([L_1,R_1],[L_2,R_2],...,[L_n,R_n]\)(\(\forall i\in [1,n],0\leq L_ ...

  8. [洛谷P1712] NOI2016 区间

    问题描述 在数轴上有 n个闭区间 [l1,r1],[l2,r2],...,[ln,rn].现在要从中选出 m 个区间,使得这 m个区间共同包含至少一个位置.换句话说,就是使得存在一个 x,使得对于每一 ...

  9. 洛谷$P1712\ [NOI2016]$区间 线段树

    正解:线段树 解题报告: 传送门$QwQ$ $umm$很久以前做的了来补个题解$QwQ$ 考虑给每个区间按权值($r-l$从大往小排序,依次加入,然后考虑如果有一个位置被覆盖次数等于$m$了就可以把权 ...

随机推荐

  1. 大数据之路week01--自学之集合_2(列表迭代器 ListIterator)

    列表迭代器: ListIterator listerator():List集合特有的迭代器 该迭代器继承了Iterator迭代器,所以,就可以直接使用hasNext()和next()方法 特有功能: ...

  2. 『题解』洛谷P1063 能量项链

    原文地址 Problem Portal Portal1:Luogu Portal2:LibreOJ Portal3:Vijos Description 在\(Mars\)星球上,每个\(Mars\)人 ...

  3. Linux下RIAD的实现及mdadm命令的基本用法

    一.RAID简述 磁盘阵列(Redundant Arrays of Independent Disks,RAID),是把多个物理磁盘组成一个阵列,当作一个逻辑磁盘使用,它将数据以分段或条带的方式储存在 ...

  4. 宋宝华:Linux设备驱动框架里的设计模式之——模板方法(Template Method)

    本文系转载,著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 作者: 宋宝华 来源: 微信公众号linux阅码场(id: linuxdev) 前言 <设计模式>这本经典 ...

  5. SQL的四种连接(左外连接、右外连接、内连接、全连接)

    1.内联接(典型的联接运算,使用像 =  或 <> 之类的比较运算符).包括相等联接和自然联接.     内联接使用比较运算符根据每个表共有的列的值匹配两个表中的行.例如,检索 stude ...

  6. 基于.NetStandard的简易EventBus实现-基础实现

    一.问题背景 最近离职来到了一家新的公司,原先是在乙方工作,这回到了甲方,在这一个月中,发现目前的业务很大一部分是靠轮询实现的,例如:通过轮询判断数据处于B状态了,则轮询到数据后执行某种动作,这个其实 ...

  7. systemd单元文件

    前面我们提到过systemd启动可以对相相互依赖的串行的服务,也是可以并行启动的.在systemd中使用单元替换init的脚本来进行系统初始化.这节将要介绍系统初始化中,作为systemd的最小单元, ...

  8. static declaration follows non-static declaration

    前段时间工作中要为android编译跨平台的第三方库,遇到了arc4random有关函数的“static declaration follows non-static declaration”问题,那 ...

  9. 概率的基本概念&离散型随机变量

    使用excel可以直接计算二项分布和超几何分布:

  10. Python3 之 with语句(高效、便捷)

    在实际的编码过程中,有时有一些任务,需要事先做一些设置,事后做一些清理,这时就需要python3 with出场了,with能够对这样的需求进行一个比较优雅的处理,最常用的例子就是对访问文件的处理. 文 ...