nyoj 17-单调递增最长子序列 && poj 2533(动态规划,演算法)
17-单调递增最长子序列
内存限制:64MB
时间限制:3000ms
Special Judge: No
accepted:21
submit:49
题目描述:
如:dabdbf最长递增子序列就是abdf,长度为4
输入描述:
第一行一个整数0<n<20,表示有n个字符串要处理
随后的n行,每行有一个字符串,该字符串的长度不会超过10000
输出描述:
输出字符串的最长递增子序列的长度
样例输入:
3
aaa
ababc
abklmncdefg
样例输出:
1
3
7 nyoj 17 分析(动态规划):
①、要求整体的最大长度,我们可以从局部的最大长度来考虑;
②、从左到右依次考虑,每遇到一个点就从第一位开始遍历到该点,看以这个点作为前缀是否为最大值
③、状态方程:dp[i] = max(dp[i], d[j] + 1); 步骤:
①、从左到右依次遍历每一个点;
②、在该点基础上再从前到后通过 dp[i] = max(dp[i], d[j] + 1) 得出该点最大的值 核心代码:
for(int i = ; i < n; ++ i)
{
dp[i] = ; //初始化每个dp[MAXN];
for(int j = ; j < i; ++ j)
if(s[j] < s[i]) dp[i] = max(dp[i], dp[j] + ); //找出所有满足条件的s[j] ==> dp[i]最大值
ans = max(ans, dp[i]);
}
C/C++代码实现(AC):
#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <cstdio>
#include <queue>
#include <set>
#include <map>
#include <stack> using namespace std;
const int MAXN = ; int main ()
{
int t;
scanf("%d", &t);
while(t --)
{
char s[MAXN];
scanf("%s", s);
int len = strlen(s), ans = -0x3f3f3f3f, dp[MAXN];
for(int i = ; i < len; ++ i)
{
dp[i] = ;
for(int j = ; j < i; ++ j)
if (s[j] < s[i])
dp[i] = max(dp[i], dp[j] + );
ans = max(ans, dp[i]);
}
printf("%d\n", ans);
}
return ;
}
※nyoj 17分析(演算法)【推荐】:
①、找出酱紫的序列:从左到右的排列是由ASCⅡ码递增;
②、且每一组相邻的点ASCⅡ之差最小,及就是最为接近 核心代码:
cnt = ; temp[] = s[];
for(int i = ; i < n; ++ i)
{
if(temp[cnt] < s[i]) temp[++cnt] = s[i] // cnt + 1即为所求
else
{
for(int j = ; j <= cnt; ++ j)
{
if(s[i] <= temp[j])
{
temp[j] = s[i];
break;
}
}
}
}
C/C++代码实现(AC):
#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <cstdio>
#include <queue>
#include <set>
#include <map>
#include <stack> using namespace std;
const int MAXN = ; int main ()
{
int t;
scanf("%d", &t);
while(t --)
{
char s[MAXN], temp[MAXN];
scanf("%s", s); int len = strlen(s), cnt = ;
temp[] = s[];
for(int i = ; i < len; ++ i)
{
if(temp[cnt] < s[i])
{
temp[++cnt] = s[i];
continue;
} for(int j = ; j <= cnt; ++ j)
{
if(s[i] <= temp[j])
{
temp[j] = s[i];
break;
}
}
}
printf("%d\n", cnt + );
}
return ;
}
| Time Limit: 2000MS | Memory Limit: 65536K | |
| Total Submissions: 60426 | Accepted: 27062 |
Description
Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.
Input
Output
Sample Input
7
1 7 3 5 9 4 8
Sample Output
4
※poj 2533 分析(演算法)【推荐】:
①、找出酱紫的序列:从左到右的排列是由ASCⅡ码递增;
②、且每一组相邻的点ASCⅡ之差最小,及就是最为接近.
核心代码:
int temp[] = A[], cnt = ; // cnt + 1 即为所求
for(int i = ; i < n; ++ i)
{
if (temp[cnt] < A[i]) temp[++cnt] = A[i];
else
{
for(int j = ; i <= cnt; ++ j)
{
if(A[i] <= temp[j])
{
temp[j] = A[i]; // 保证序列ASCⅡ之和最小化
break;
}
}
}
}
C/C++代码实现(AC):
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <stack>
#include <map>
#include <queue> using namespace std;
const int MAXN = ;
int A[MAXN], temp[MAXN]; int main()
{
int n, cnt = ;
scanf("%d", &n);
for(int i = ; i < n; ++ i)
scanf("%d", &A[i]); temp[] = A[];
for(int i = ; i < n; ++ i)
{
if(temp[cnt] < A[i]) temp[++ cnt] = A[i];
else
{
for(int j = ; j <= cnt; ++ j)
{
if(A[i] <= temp[j])
{
temp[j] = A[i];
break;
}
}
}
}
printf("%d\n", cnt + );
return ;
}
nyoj 17-单调递增最长子序列 && poj 2533(动态规划,演算法)的更多相关文章
- 最长递增子序列问题 nyoj 17单调递增最长子序列 nyoj 79拦截导弹
一, 最长递增子序列问题的描述 设L=<a1,a2,…,an>是n个不同的实数的序列,L的递增子序列是这样一个子序列Lin=<aK1,ak2,…,akm>,其中k1< ...
- nyoj 17 单调递增最长子序列
单调递增最长子序列 时间限制:3000 ms | 内存限制:65535 KB 难度:4 描述 求一个字符串的最长递增子序列的长度如:dabdbf最长递增子序列就是abdf,长度为4 输入 ...
- nyoj 题目17 单调递增最长子序列
单调递增最长子序列 时间限制:3000 ms | 内存限制:65535 KB 难度:4 描述 求一个字符串的最长递增子序列的长度如:dabdbf最长递增子序列就是abdf,长度为4 输入 ...
- nyoj 单调递增最长子序列
单调递增最长子序列 时间限制:3000 ms | 内存限制:65535 KB 难度:4 描述 求一个字符串的最长递增子序列的长度如:dabdbf最长递增子序列就是abdf,长度为4 输入 ...
- 【LCS,LIS】最长公共子序列、单调递增最长子序列
单调递增最长子序列 时间限制:3000 ms | 内存限制:65535 KB 难度:4 描述 求一个字符串的最长递增子序列的长度如:dabdbf最长递增子序列就是abdf,长度为4 输入 ...
- NYOJ17,单调递增最长子序列
单调递增最长子序列 时间限制:3000 ms | 内存限制:65535 KB 难度:4 描写叙述 求一个字符串的最长递增子序列的长度 如:dabdbf最长递增子序列就是abdf.长度为4 输入 第 ...
- ny17 单调递增最长子序列
单调递增最长子序列时间限制:3000 ms | 内存限制:65535 KB难度:4 描述 求一个字符串的最长递增子序列的长度 如:dabdbf最长递增子序列就是abdf,长度为4 输入 ...
- nyoj_17_单调递增最长子序列_201403121516
单调递增最长子序列 时间限制:3000 ms | 内存限制:65535 KB 难度:4 描述 求一个字符串的最长递增子序列的长度如:dabdbf最长递增子序列就是abdf,长度为4 输入 ...
- 单调递增最长子序列(南阳理工ACM)
描述 求一个字符串的最长递增子序列的长度如:dabdbf最长递增子序列就是abdf,长度为4 输入 第一行一个整数0<n<20,表示有n个字符串要处理随后的n行,每行有一个字符串,该字符串 ...
随机推荐
- NoticeBoard
本人蒟蒻,请轻点虐. 本人是一个即将退役的蒟蒻. 有些题目和模拟赛用密码保护起来了,请小伙伴们不要猜了,猜不出来的.想知道大佬们如果想查看可以直接找我问,您们高抬贵眼会让我受宠若惊. 哇终于有人找我要 ...
- vue3.0 + ueditor
公司有个需求,需要做个发送邮件的模版(富文本对于模版的扩展性更好吧) 关于富文本,也找了一些好看且支持vue的,但是功能都没有百度全面 反正这个系统也是自己人用,颜值无所谓了 关于vue2.0+ued ...
- 03jmeter-json提取器
要解决的问题:接口返回数据为json格式,需要获取返回结果中的某些值以便后续接口使用 注:可用json path tester(https://jsonpath.curiousconcept.com/ ...
- 【教程】基于Ubuntu系统的PyTorch虚拟环境配置
目录 一.PyTorch虚拟环境配置 二.PyTorch虚拟环境使用 三.常用命令 Editor: Veagau Time: 2019/10/17 一.PyTorch虚拟环境配置 该部分操作均在终端( ...
- 百万年薪python之路 -- 小数据池和代码块练习
1.请用代码验证 "alex" 是否在字典的值中? info = {'name':'王刚蛋','hobby':'铁锤','age':'18',...100个键值对} info = ...
- 二叉树的查找(前序、中序、后序、层序遍历)--biaobiao88
建立一棵含有n个结点的二叉树,采用二叉链表存储: 输出前序.中序.后序..层序遍历该二叉树的遍历结果. 定义二叉树的数据类型——二叉树结点结构体BiNode.建立二叉链表可以采用扩展二叉树的一个遍历序 ...
- Servlet处理原生Ajax请求
萌新小白人生中的第一篇博客,难免会有差错,还望各位大佬多多包涵. 1. Ajax技术简介 Ajax(Asynchronous JavaScript and XML,异步JavaScript和 ...
- redis集群之Codis
在大数据高并发场景下,单个 Redis 实例往往会显得捉襟见肘.首先体现在内存上,单个 Redis 的内存不宜过大,内存太大会导致 rdb 文件过大,进一步导致主从同步时全量同步时间过长,在实例重启恢 ...
- ajax同步请求与异步请求的区别
ajax 区别: async:布尔值,用来说明请求是否为异步模式.async是很重要的,因为它是用来控制JavaScript如何执行该请求. 当设置为true时,将以异步模式发送该请求,JavaScr ...
- dom 创建时间
下面讲述如何在页面生成一个装有日期的盒子 首先写出一个日期的函数进行赋值使用document.createElement创建一个文档节点div,然后将时间函数输出在div之中,利用document.b ...