Elasticsearch(9) --- 聚合查询(Bucket聚合)
聚合查询(Bucket聚合)
上一篇讲了Elasticsearch聚合查询中的Metric聚合:Elasticsearch(8) --- 聚合查询(Metric聚合)
说明
本文主要参考于Elasticsearch 官方文档 7.3版本。 Bucket Aggregations
概念
:Bucket 可以理解为一个桶,它会遍历文档中的内容,凡是符合某一要求的就放入一个桶中,分桶相当与 SQL 中的 group by。
这篇博客讲的桶的关键字有:Terms Aggregation
、Filter Aggregation
、Histogram Aggregation
、Range Aggregation
、Date Aggregation
。
一、创建索引、数据
1、创建索引
DELETE cars
PUT cars
{
"mappings": {
"properties": {
"price": {
"type":"long"
},
"color": {
"type":"keyword"
},
"brand": {
"type":"keyword"
},
"sellTime": {
"type":"date"
}
}
}
}
属性字段:价格、颜色、品牌、销售时间
2、添加索引数据
POST /cars/_bulk
{ "index": {}}
{ "price" : 80000, "color" : "red", "brand" : "BMW", "sellTime" : "2014-01-28" }
{ "index": {}}
{ "price" : 85000, "color" : "green", "brand" : "BMW", "sellTime" : "2014-02-05" }
{ "index": {}}
{ "price" : 120000, "color" : "green", "brand" : "Mercedes", "sellTime" : "2014-03-18" }
{ "index": {}}
{ "price" : 105000, "color" : "blue", "brand" : "Mercedes", "sellTime" : "2014-04-02" }
{ "index": {}}
{ "price" : 72000, "color" : "green", "brand" : "Audi", "sellTime" : "2014-05-19" }
{ "index": {}}
{ "price" : 60000, "color" : "red", "brand" : "Audi", "sellTime" : "2014-06-05" }
{ "index": {}}
{ "price" : 40000, "color" : "red", "brand" : "Audi", "sellTime" : "2014-07-01" }
{ "index": {}}
{ "price" : 35000, "color" : "blue", "brand" : "Honda", "sellTime" : "2014-08-12" }
3、查看是否成功
命令
GET /_cat/count/cars?v
可以看到该索引存在,并且有8条文档数据。
二、Terms Aggregation
官方7.3文档:Terms Aggregation
概念
: 根据某一项的每个唯一的值的聚合。
1、根据品牌分桶
GET cars/_search?size=0
{
"aggs" : {
"genres" : {
"terms" : { "field" : "brand" }
}
}
}
返回结果
2、分桶后只显示文档数量前3的桶
GET cars/_search?size=0
{
"aggs" : {
"cars" : {
"terms" : {
"field" : "brand",
"size" : 3
}
}
}
}
返回
从图中可以看出文档数量前三的桶。
3、分桶后排序
GET cars/_search?size=0
{
"aggs" : {
"genres" : {
"terms" : {
"field" : "brand",
"order" : { "_count" : "asc" }
}
}
}
}
4、显示文档数量大于3的桶
GET cars/_search?size=0
{
"aggs" : {
"brands" : {
"terms" : {
"field" : "brand",
"min_doc_count": 3
}
}
}
}
5、使用精确指定的词条进行分桶
GET /cars/_search?size=0
{
"aggs" : {
"JapaneseCars" : {
"terms" : {
"field" : "brand",
"include" : ["BMW", "Audi"]
}
}
}
}
这里也只展示些常用的,更多有关Terms Aggregation那就看官网吧。
三、 Filter Aggregation
官方文档: Filter Aggregation 和 Filters Aggregation
Filter概念
:指具体的域和具体的值,可以说是在 Terms Aggregation 的基础上进行了过滤,只对特定的值进行了聚合。
1、过滤获取品牌为BMW的桶,并求该桶平均值
GET /cars/_search?size=0
{
"aggs" : {
"brands" : {
"filter" : { "term": { "brand": "BMW" } },
"aggs" : {
"avg_price" : { "avg" : { "field" : "price" } }
}
}
}
}
返回
2、过滤获取品牌为BMW的或者color为绿色的桶
Filters概念
: Filter Aggreagtion 只能指定一个过滤条件,响应也只是单个桶。如果想要只对多个特定值进行聚合,使用 Filter Aggreagtion 只能进行多次请求。
而使用 Filters Aggreagation 就可以解决上述的问题,它可以指定多个过滤条件,也是说可以对多个特定值进行聚合。
GET /cars/_search?size=0
{
"size": 0,
"aggs" : {
"cars" : {
"filters" : {
"filters" : {
"colorBucket" : { "match" : { "color" : "red" }},
"brandBucket" : { "match" : { "brand" : "Audi" }}
}
}
}
}
}
返回
四、Histogram Aggreagtion
概念
Histogram与Terms聚合类似,都是数据分组,区别是Terms是按照Field的值分组,而Histogram可以按照指定的间隔对Field进行分组
1、根据价格区间为10000分桶
GET /cars/_search?size=0
{
"aggs" : {
"prices" : {
"histogram" : {
"field" : "price",
"interval" : 10000
}
}
}
}
返回
2、根据价格区间为10000分桶,同时如果桶中没有文档就不显示桶
上面的分桶我们可以发现价格在5000~6000 的文档没有也显示为0,我们想把如果桶中没有文档就不显示该桶
GET /cars/_search?size=0
{
"aggs" : {
"prices" : {
"histogram" : {
"field" : "price",
"interval" : 10000,
"min_doc_count" : 1
}
}
}
}
返回
五、Range Aggregation
官方文档:Range Aggregation
概念
: 根据用户传递的范围参数作为桶,进行相应的聚合。在同一个请求中,可以传递多组范围,每组范围作为一个桶。
1、根据价格区间分桶
GET /cars/_search?size=0
{
"aggs" : {
"price_ranges" : {
"range" : {
"field" : "price",
"ranges" : [
{ "to" : 50000 },
{ "from" : 5000, "to" : 80000 },
{ "from" : 80000 }
]
}
}
}
}
返回
我们也可以指定key的名称
GET /cars/_search?size=0
{
"aggs" : {
"price_ranges" : {
"range" : {
"field" : "price",
"ranges" : [
{ "key" : "xiaoyu", "to" : 50000 },
{ "key" : "baohan", "from" : 5000, "to" : 80000 },
{ "key" : "dayu", "from" : 80000 }
]
}
}
}
}
返回
六、 Date Aggregation
官方文档: Date Histogram Aggregation 和 Date Range Aggregation
Date Histogram概念
针对于时间格式数据的直方图聚合,基本的特性与 Histogram Aggregation 一致。
1、按月分桶显示每个月的销量
注意
官方文档这里不是interval而是calendar_interval,但是按照这样操作会报错,因为我看的7.3的文档,而我部署的es是7.1版本。说明这个地方7.3有了改进。
POST /cars/_search?size=0
{
"aggs" : {
"sales_over_time" : {
"date_histogram" : {
"field" : "sellTime",
"interval" : "1M",
"format" : "yyyy-MM-dd"
}
}
}
}
返回
2、根据指定时间区间分桶
Date Range概念
:针对于时间格式数据的范围聚合,基本的特性与 Range Aggreagtion 一致。
POST /cars/_search?size=0
{
"aggs": {
"range": {
"date_range": {
"field": "sellTime",
"format": "MM-yyyy",
"ranges": [
{ "to": "now-10M/M" },
{ "from": "now-10M/M" }
]
}
}
}
}
上面的意思是10个月前的分为一个桶,10个月前之后的分为一个桶
参考
1、Elasticsearch核心技术与实战---阮一鸣(eBay Pronto平台技术负责人
3、Elasticsearch聚合——Bucket Aggregations
我相信,无论今后的道路多么坎坷,只要抓住今天,迟早会在奋斗中尝到人生的甘甜。抓住人生中的一分一秒,胜过虚度中的一月一年!(14)
Elasticsearch(9) --- 聚合查询(Bucket聚合)的更多相关文章
- Elasticsearch(8) --- 聚合查询(Metric聚合)
Elasticsearch(8) --- 聚合查询(Metric聚合) 在Mysql中,我们可以获取一组数据的 最大值(Max).最小值(Min).同样我们能够对这组数据进行 分组(Group).那么 ...
- ElasticSearch的高级复杂查询:非聚合查询和聚合查询
一.非聚合复杂查询(这儿展示了非聚合复杂查询的常用流程) 查询条件QueryBuilder的构建方法 1.1 精确查询(必须完全匹配上,相当于SQL语句中的“=”) ① 单个匹配 termQuery ...
- ES[7.6.x]学习笔记(十)聚合查询
聚合查询,它是在搜索的结果上,提供的一些聚合数据信息的方法.比如:求和.最大值.平均数等.聚合查询的类型有很多种,每一种类型都有它自己的目的和输出.在ES中,也有很多种聚合查询,下面我们看看聚合查询的 ...
- Elasticsearch使用系列-基本查询和聚合查询+sql插件
Elasticsearch使用系列-ES简介和环境搭建 Elasticsearch使用系列-ES增删查改基本操作+ik分词 Elasticsearch使用系列-基本查询和聚合查询+sql插件 Elas ...
- django基础之day04,聚合查询和分组查询
聚合查询: 聚合函数必须用在分组之后,没有分组其实默认整体就是一组 Max Min Sum Avg Count 1.分组的关键字是:aggretate 2.导入模块 from django.db.mo ...
- Es学习第九课, 聚合查询和复合查询
ES除了实现前几课的基本查询,也可以实现类似关系型数据库的聚合查询,如平均值sum.最小值min.最大值max等等 我们就用上一课的数据作为参考来举例 聚合查询 sum聚合 sum是一个求累加值的聚合 ...
- SQL基础教程(第2版)第3章 聚合与排序:3-1 对表进行聚合查询
3-1 对表进行聚合查询 ● 使用聚合函数对表中的列进行计算合计值或者平均值等的汇总操作.● 通常,聚合函数会对NULL以外的对象进行汇总.但是只有COUNT函数例外,使用COUNT(*)可以查出包含 ...
- Django学习——图书相关表关系建立、基于双下划线的跨表查询、聚合查询、分组查询、F查询、Q查询、admin的使用、使用脚本调用Django、Django查看源生sql
0 图书相关表关系建立 1.5个表 2.书籍表,作者表,作者详情表(垂直分表),出版社表,书籍和作者表(多对多关系) 一对一 多对多 本质都是一对多 外键关系 3.一对一的关系,关联字段可以写在任意一 ...
- java使用elasticsearch分组进行聚合查询(group by)-项目中实际应用
java连接elasticsearch 进行聚合查询进行相应操作 一:对单个字段进行分组求和 1.表结构图片: 根据任务id分组,分别统计出每个任务id下有多少个文字标题 .SQL:select id ...
随机推荐
- spring-boot-plus后台快速开发脚手架之代码生成器使用(十)
spring-boot-plus 代码生成 Generator 代码生成内容 spring-boot-plus在mybatis-plus基础上,新增param/vo等模板 拓展controller/s ...
- HBase 系列(八)——HBase 协处理器
一.简述 在使用 HBase 时,如果你的数据量达到了数十亿行或数百万列,此时能否在查询中返回大量数据将受制于网络的带宽,即便网络状况允许,但是客户端的计算处理也未必能够满足要求.在这种情况下,协处理 ...
- vue中组件通信
组件的通信 1. 父子组件通信 案例: //父子组件通信思路 // 1 将父组件的数据传给子组件 在子组件上自定义单项数据绑定 // 2 子组件用props 接受自定义的那个:号属性 Vue.co ...
- Git随身手册
Git随身手册 本文是关于Git探索的一篇文章,阐述了Git的大部分命令和使用方式,并列举了几个典型的使用场景以供参考和体会. 对于Git这个分布式的VCS,从链表的角度来看待是最容易理解的: 一次c ...
- unity编辑器扩展_08(创建自定义窗口)
代码: using UnityEngine;using UnityEditor; public class MyWidow : EditorWindow{ [MenuItem("Win ...
- 在.net core web 项目中使用Nlog记录日志
第1步,添加NLog.Web.AspNetCore包引用 方法1 在项目上右击“依赖项”---“管理Nuget程序包(N)…”,然后在浏览对话框中输入“NLog.Web.AspNetCore”查找包, ...
- html基础——下拉式菜单
一个网站能否让用户容易使用该网站往往是由菜单栏体现出来,因为它为网页的大多数页面提供功能入口.一个轻轻的点击以后,即可显示出菜单项,将网站的大部分页面和功能显示出来让用户清楚了解从而用户节约一定的时间 ...
- lightoj 1097 - Lucky Number(线段树)
Lucky numbers are defined by a variation of the well-known sieve of Eratosthenes. Beginning with the ...
- [HNOI2002]沙漠寻宝 题解
一道大模拟 代码 #include <cstdio> #include <iostream> #include <cstring> #include <str ...
- Kafka中的ISR、AR又代表什么?ISR的伸缩又指什么?
相信大家已经对 kafka 的基本概念已经有一定的了解了,下面直接来分析一下 ISR 和 AR 的概念. ISR and AR 简单来说,分区中的所有副本统称为 AR (Assigned Replic ...