UVa 10480:Sabotage (最小割集)
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1421
题意:给出n个点m条边,每条边有一个花费,问将1和2隔离需要破坏的边的最小花费的边集。
思路:很明显是最小割,但是问题在于如何求出这个最小割集。通过以前的题目,求网络的最大流就是求网络的最小割,那么从源点到汇点的最大流必定就会经过最小割集的边,当这条边满载(flow == cap)的时候,这条边其实就是最小割集的边。求出最大流之后,整个残余网络会被分成两个集合,一个和源点直接间接相连的点集,另一个和汇点直接间接相连的点集,所以只要BFS从源点或者汇点往前扫,一边扫一边标记,直到扫到(flow == cap)的边就停止。然后枚举边,如果一条边有一边的顶点是被标记过的,另一边的顶点没被标记,那么这条边就是最小割集之一了。
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#include <string>
#include <iostream>
#include <stack>
#include <map>
#include <queue>
#include <set>
using namespace std;
typedef long long LL;
#define N 55
#define M 505
#define INF 0x3f3f3f3f
struct Edge {
int u, v, cap;
Edge () {}
Edge (int u, int v, int cap) : u(u), v(v), cap(cap) {}
} edge[M*];
vector<int> G[N];
int dis[N], cur[N], S, T, tot, vis[N], mp[N][N]; void Add(int u, int v, int cap) {
edge[tot] = Edge(u, v, cap);
G[u].push_back(tot++);
edge[tot] = Edge(v, u, );
G[v].push_back(tot++);
} int BFS() {
memset(dis, INF, sizeof(dis));
queue<int> que;
que.push(S); dis[S] = ;
while(!que.empty()) {
int u = que.front(); que.pop();
for(int i = ; i < G[u].size(); i++) {
Edge &e = edge[G[u][i]];
if(dis[e.v] == INF && e.cap > ) {
dis[e.v] = dis[u] + ;
que.push(e.v);
}
}
}
return dis[T] < INF;
} int DFS(int u, int maxflow) {
if(u == T) return maxflow;
for(int i = cur[u]; i < G[u].size(); i++) {
cur[u] = i;
Edge &e = edge[G[u][i]];
if(dis[e.v] == dis[u] + && e.cap > ) {
int flow = DFS(e.v, min(e.cap, maxflow));
if(flow > ) {
e.cap -= flow;
edge[G[u][i]^].cap += flow;
return flow;
}
}
}
return ;
} int Dinic() {
int ans = ;
while(BFS()) {
int flow;
memset(cur, , sizeof(cur));
while(flow = DFS(S, INF)) ans += flow;
}
return ans;
} void bfs() {
queue<int> que;
que.push(S); vis[S] = ;
while(!que.empty()) {
int u = que.front(); que.pop();
for(int i = ; i < G[u].size(); i++) {
Edge &e = edge[G[u][i]];
if(!vis[e.v] && e.cap > ) {
vis[e.v] = ;
que.push(e.v);
}
}
}
} int main()
{
int n, m;
while(~scanf("%d%d", &n, &m), n + m) {
int u, v, cap; tot = ;
for(int i = ; i <= n; i++) G[i].clear();
memset(mp, , sizeof(mp));
memset(vis, , sizeof(vis));
for(int i = ; i < m; i++) {
scanf("%d%d%d", &u, &v, &cap);
Add(u, v, cap); Add(v, u, cap);
} S = , T = ;
Dinic();
bfs();
for(int u = ; u <= n; u++) {
for(int i = ; i < G[u].size(); i++) {
int v = edge[G[u][i]].v;
if(vis[u] && !vis[v] || vis[v] && !vis[u]) mp[u][v] = mp[v][u] = ;
}
}
for(int i = ; i <= n; i++) {
for(int j = i + ; j <= n; j++) {
if(mp[i][j]) printf("%d %d\n", i, j);
}
}
puts("");
}
return ;
}
UVa 10480:Sabotage (最小割集)的更多相关文章
- UVA - 10480 Sabotage 最小割,输出割法
UVA - 10480 Sabotage 题意:现在有n个城市,m条路,现在要把整个图分成2部分,编号1,2的城市分成在一部分中,拆开每条路都需要花费,现在问达成目标的花费最少要隔开那几条路. 题解: ...
- UVA 10480 Sabotage (网络流,最大流,最小割)
UVA 10480 Sabotage (网络流,最大流,最小割) Description The regime of a small but wealthy dictatorship has been ...
- UVA - 10480 Sabotage【最小割最大流定理】
题意: 把一个图分成两部分,要把点1和点2分开.隔断每条边都有一个花费,求最小花费的情况下,应该切断那些边.这题很明显是最小割,也就是最大流.把1当成源点,2当成汇点,问题是要求最小割应该隔断那条边. ...
- UVA 10480 Sabotage (最大流) 最小割边
题目 题意: 编写一个程序,给定一个网络规范和破坏每个连接的成本,确定要切断哪个连接,以便将首都和最大的城市分离到尽可能低的成本. 分割-------------------------------- ...
- Uva 10480 Sabotage 最大流
表示自从学了网络流,就基本上是一直用dinic 这个题一看就是用最大流,作为常识,两个点之间的最大流等于最小割 但是这个题需要输出割边,然后我就不会了,dinic判流量我觉得也可做,但是一直wa 然后 ...
- UVA 10480 Sabotage
最小割+输出方案 #include<cstdio> #include<cstring> #include<string> #include<cmath> ...
- UVA - 10480 Sabotage (Dinic)
The regime of a small but wealthy dictatorship has been abruptly overthrown by an unexpected rebel-l ...
- UVA 10480 Sabotage (最大流最小割)
题目链接:点击打开链接 题意:把一个图分成两部分,要把点1和点2分开.隔断每条边都有一个花费,求最小花费的情况下,应该切断那些边. 这题很明显是最小割,也就是最大流.把1当成源点,2当成汇点. 问题是 ...
- hiho 第116周,最大流最小割定理,求最小割集S,T
小Hi:在上一周的Hiho一下中我们初步讲解了网络流的概念以及常规解法,小Ho你还记得内容么? 小Ho:我记得!网络流就是给定了一张图G=(V,E),以及源点s和汇点t.每一条边e(u,v)具有容量c ...
随机推荐
- C#使用Selenium实现QQ空间数据抓取 登录QQ空间
经@吃西瓜的星星提醒 首先我们介绍下Selenium Selenium也是一个用于Web应用程序测试的工具.Selenium测试直接运行在浏览器中,就像真正的用户在操作一样.支持的浏览器包括IE.Mo ...
- Java数据存储机制的实现
原文地址:http://yanwushu.sinaapp.com/java_data_storage/ Java程序在执行时须要为一系列的值或者对象分配内存,这些值都存在什么地方?用什么样的数据结构存 ...
- WPF自定义控件步骤
1 .在类库里面添加system.xaml的引用,给控件指定Name: 2.设计控件的外观,并将内部元素绑定到控件类的属性:此时即使没有在类中增加相关属性也不会报错,xaml类似html错误只是不显示 ...
- WPF DataTemplateSelector的使用
<Window x:Class="CollectionBinding.MainWindow" xmlns="http://schemas.micros ...
- DSP Builder 12.0安装及crack方法
在安装dsp_builder之前请确保已安装所需要的matlab版本 在此之前我已经安装了matlab R2011a,下面安装dsp builder 下面就是破解了,因为12.0的版本刚出,还没有相应 ...
- 深入理解Amazon Alexa Skill(四)
本节利用三星Smartthings Classic物联网平台的web service smartapp,实现了一个Alexa智能家居skill的例子,由此来了解Alexa是如何控制其他云的智能家居设备 ...
- SGI地址模式: O32, N32和N64
背景 MIPS R10000芯片支持MIPS ABI.遵循这一标准的程序能够运行在遵循这一标准的任何处理器/系统上.目前,主要的支持者有SGI,西门子,Nixdof, Tandem, Pyramid, ...
- CSS技巧分享:如何用css制作横排二级下拉菜单
原文:CSS技巧分享:如何用css制作横排二级下拉菜单 导航菜单是每个网站所必备的功能,也是每个学习制作网站的朋友所必须接触的,如何用css样式制作一个简单漂亮的二级下拉菜单呢,下来小编就一步一步教大 ...
- PRML Chapter3
曲线拟合的几种方法 最大似然估计MLE,最大后验概率MAP:MLE和MAP MLE 给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即"模型已定, ...
- Qt 5 最小构建笔记(只编译QtBase)
只想用Qt5最基本的功能,因此只编译QtBase.也不想为了编译一个Qt装很多东西(比如非常肥的DirectX SDK) 软件清单: Visual Studio 2010 Professional w ...