Problem Description
I used to think I could be anything, but now I know that I couldn't do anything. So I started traveling.

The
nation looks like a connected bidirectional graph, and I am randomly
walking on it. It means when I am at node i, I will travel to an
adjacent node with the same probability in the next step. I will pick up
the start node randomly (each node in the graph has the same
probability.), and travel for d steps, noting that I may go through some
nodes multiple times.

If I miss some sights at a node, it will
make me unhappy. So I wonder for each node, what is the probability that
my path doesn't contain it.

 
Input
The first line contains an integer T, denoting the number of the test cases.

For
each test case, the first line contains 3 integers n, m and d, denoting
the number of vertices, the number of edges and the number of steps
respectively. Then m lines follows, each containing two integers a and
b, denoting there is an edge between node a and node b.

T<=20,
n<=50, n-1<=m<=n*(n-1)/2, 1<=d<=10000. There is no
self-loops or multiple edges in the graph, and the graph is connected.
The nodes are indexed from 1.

 
Output
For each test cases, output n lines, the i-th line containing the desired probability for the i-th node.

Your answer will be accepted if its absolute error doesn't exceed 1e-5.

 
Sample Input
2
5 10 100
1 2
2 3
3 4
4 5
1 5
2 4
3 5
2 5
1 4
1 3
10 10 10
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10
4 9
 
Sample Output
0.0000000000
0.0000000000
0.0000000000
0.0000000000
0.0000000000
0.6993317967
0.5864284952
0.4440860821
0.2275896991
0.4294074591
0.4851048742
0.4896018842
0.4525044250
0.3406567483
0.6421630037
 
Source
 
 

 
 
题意:n个点,m条边的无向图,你随机的从一个点开始,走k步,问你对于每一个点,它不被经过的概率是多少。
我们这样考虑,一个点不被经过的概率就是1-这个点经过的概率,所以就设f[i][j]为已经走了i步, 不经过x点,走到第j个点的概率。
$\large f[i+1][to]+=\frac{1}{deg[j]}f[i][j]$
于是对于每一个点我们都跑一遍dp。
然后每个点x的答案就是1-∑dp[i][x].
然后 就水过去了
 
 

 
 
#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
#define gc getchar()
inline int read(){
int res=;char ch=gc;
while(!isdigit(ch))ch=gc;
while(isdigit(ch)){res=(res<<)+(res<<)+(ch^);ch=gc;}
return res;
}
#undef gc int T, n, m, K;
struct edge{
int nxt, to;
}ed[];
int head[], cnt;
inline void add(int x, int y)
{
ed[++cnt] = (edge){head[x], y};
head[x] = cnt;
}
int deg[];
double f[][]; inline double DP(int cur)
{
memset(f, , sizeof f);
double res = ;
for (int i = ; i <= n ; i ++) f[][i] = (double)(1.0/(double)n);
for (int j = ; j <= K ; j ++)
{
for (int x = ; x <= n ; x ++)
{
if (x == cur) continue;
for (int i = head[x] ; i ; i = ed[i].nxt)
{
int to = ed[i].to;
f[j+][to] += (double)(f[j][x] / (double)deg[x]);
}
}
res += f[j][cur];
}
return res;
} int main()
{
T = read();
while(T--)
{
memset(head, , sizeof head);
memset(deg, , sizeof deg);
cnt = ;
n = read(), m = read(), K = read();
for (int i = ; i <= m ; i ++)
{
int x = read(), y = read();
add(x, y), add(y, x);
deg[x]++, deg[y]++;
}
for (int i = ; i <= n ; i ++)
printf("%.10lf\n", - DP(i));
}
return ;
}

[HDU5001]Walk的更多相关文章

  1. hdu5001 Walk 概率DP

    I used to think I could be anything, but now I know that I couldn't do anything. So I started travel ...

  2. HDU-5001 Walk (概率DP)

    Problem Description I used to think I could be anything, but now I know that I couldn't do anything. ...

  3. python os.walk()

    os.walk()返回三个参数:os.walk(dirpath,dirnames,filenames) for dirpath,dirnames,filenames in os.walk(): 返回d ...

  4. LYDSY模拟赛day1 Walk

    /* 依旧考虑新增 2^20 个点. i 只需要向 i 去掉某一位的 1 的点连边. 这样一来图的边数就被压缩到了 20 · 2^20 + 2n + m,然后 BFS 求出 1 到每个点的最短路即可. ...

  5. How Google TestsSoftware - Crawl, walk, run.

    One of the key ways Google achievesgood results with fewer testers than many companies is that we ra ...

  6. poj[3093]Margaritas On River Walk

    Description One of the more popular activities in San Antonio is to enjoy margaritas in the park alo ...

  7. os.walk()

    os.walk() 方法用于通过在目录树种游走输出在目录中的文件名,向上或者向下. walk()方法语法格式如下: os.walk(top[, topdown=True[, onerror=None[ ...

  8. 精品素材:WALK & RIDE 单页网站模板下载

    今天,很高兴能向大家分享一个响应式的,简约风格的 HTML5 单页网站模板.Walk & Ride 这款单页网站模板是现代风格的网页模板,简洁干净,像素完美,特别适合用于推广移动 APP 应用 ...

  9. 股票投资组合-前进优化方法(Walk forward optimization)

    code{white-space: pre;} pre:not([class]) { background-color: white; }if (window.hljs && docu ...

随机推荐

  1. fremark遍历出的li怎么加事件(cforeach循环遍历也同样适用)

    遇见这个问题烦了好久好久,网上也没找到答案,琢磨了半天终于找到了方法 1.下面是一个分页信息遍历添加事件,页面跳转 <!-- 分页条信息 --> <div class="c ...

  2. OPC—— KepServer.ServerState返回值为3和OPCConfig.exe配置文件的根目录

    做开发没有对电脑的绝对管理员权限的问题,会出现很多意外,调试OPC是总是连接状态有时莫明返回3,提示 not configuration,问题在于: 没有以管理员权限运行OPCConfig.exe,导 ...

  3. ZooKeeper 介绍及集群环境搭建

    本篇由鄙人学习ZooKeeper亲自整理的一些资料 包括:ZooKeeper的介绍,我们要学习ZooKeeper的话,首先就要知道他是干嘛的对吧. 其次教大家如何去安装这个精巧的智慧品! 相信你能研究 ...

  4. 利用Jenkins实现项目自动化部署

    1.安装Jenkins,参考上一篇博客:安装Jenkins 安装Java 安装tomcat 安装maven 2.全局工具配置,填写好后点击save 3.安装git plugin插件

  5. (七十二)c#Winform自定义控件-雷达图

    前提 入行已经7,8年了,一直想做一套漂亮点的自定义控件,于是就有了本系列文章. GitHub:https://github.com/kwwwvagaa/NetWinformControl 码云:ht ...

  6. 黑苹果之DELL台式机安装Mac OS X 10.13.6版本操作系统

    由于本人所在的公司一般都是DELL的品牌台式机,所以以DELL台式机做小白鼠.记得在2012年的时候,在当时的那家公司为了学习自学IOS开发的Objective-C开发语言的时候,由于囊中羞涩买不起m ...

  7. 一台机器上搭建多个redis实例的配置文件修改部分

    1.单个redis服务搭建请参考:redis服务搭建 2.一台Redis服务器,分成多个节点,每个节点分配一个端口(6380,6381…),默认端口是6379. 每个节点对应一个Redis配置文件,如 ...

  8. java基础之循环遍历List和Map

    List和Map是在编程中使用的最频繁的集合类型了,每天都不知道要见它们多少面.在这里介绍下这两种类型的循环遍历,以供学习参考和使用. 一.List 遍历List一般有三种方法,如下: List< ...

  9. Oracle 存储过程判断语句正确写法和时间查询方法

    判断语句:if 条件 then   if  条件  then ************;   elsif  条件  then  ************;   elsif 条件  then ***** ...

  10. 函数的return和参数

    1.函数 将一些代码进行封装 def 函数名 括号 冒号:#创建 函数体(代码块) 函数名 + 小括号 #调用 1.1函数的返回值 return return 不写返回的是None,return写了不 ...