Problem Description
I used to think I could be anything, but now I know that I couldn't do anything. So I started traveling.

The
nation looks like a connected bidirectional graph, and I am randomly
walking on it. It means when I am at node i, I will travel to an
adjacent node with the same probability in the next step. I will pick up
the start node randomly (each node in the graph has the same
probability.), and travel for d steps, noting that I may go through some
nodes multiple times.

If I miss some sights at a node, it will
make me unhappy. So I wonder for each node, what is the probability that
my path doesn't contain it.

 
Input
The first line contains an integer T, denoting the number of the test cases.

For
each test case, the first line contains 3 integers n, m and d, denoting
the number of vertices, the number of edges and the number of steps
respectively. Then m lines follows, each containing two integers a and
b, denoting there is an edge between node a and node b.

T<=20,
n<=50, n-1<=m<=n*(n-1)/2, 1<=d<=10000. There is no
self-loops or multiple edges in the graph, and the graph is connected.
The nodes are indexed from 1.

 
Output
For each test cases, output n lines, the i-th line containing the desired probability for the i-th node.

Your answer will be accepted if its absolute error doesn't exceed 1e-5.

 
Sample Input
2
5 10 100
1 2
2 3
3 4
4 5
1 5
2 4
3 5
2 5
1 4
1 3
10 10 10
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10
4 9
 
Sample Output
0.0000000000
0.0000000000
0.0000000000
0.0000000000
0.0000000000
0.6993317967
0.5864284952
0.4440860821
0.2275896991
0.4294074591
0.4851048742
0.4896018842
0.4525044250
0.3406567483
0.6421630037
 
Source
 
 

 
 
题意:n个点,m条边的无向图,你随机的从一个点开始,走k步,问你对于每一个点,它不被经过的概率是多少。
我们这样考虑,一个点不被经过的概率就是1-这个点经过的概率,所以就设f[i][j]为已经走了i步, 不经过x点,走到第j个点的概率。
$\large f[i+1][to]+=\frac{1}{deg[j]}f[i][j]$
于是对于每一个点我们都跑一遍dp。
然后每个点x的答案就是1-∑dp[i][x].
然后 就水过去了
 
 

 
 
#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
#define gc getchar()
inline int read(){
int res=;char ch=gc;
while(!isdigit(ch))ch=gc;
while(isdigit(ch)){res=(res<<)+(res<<)+(ch^);ch=gc;}
return res;
}
#undef gc int T, n, m, K;
struct edge{
int nxt, to;
}ed[];
int head[], cnt;
inline void add(int x, int y)
{
ed[++cnt] = (edge){head[x], y};
head[x] = cnt;
}
int deg[];
double f[][]; inline double DP(int cur)
{
memset(f, , sizeof f);
double res = ;
for (int i = ; i <= n ; i ++) f[][i] = (double)(1.0/(double)n);
for (int j = ; j <= K ; j ++)
{
for (int x = ; x <= n ; x ++)
{
if (x == cur) continue;
for (int i = head[x] ; i ; i = ed[i].nxt)
{
int to = ed[i].to;
f[j+][to] += (double)(f[j][x] / (double)deg[x]);
}
}
res += f[j][cur];
}
return res;
} int main()
{
T = read();
while(T--)
{
memset(head, , sizeof head);
memset(deg, , sizeof deg);
cnt = ;
n = read(), m = read(), K = read();
for (int i = ; i <= m ; i ++)
{
int x = read(), y = read();
add(x, y), add(y, x);
deg[x]++, deg[y]++;
}
for (int i = ; i <= n ; i ++)
printf("%.10lf\n", - DP(i));
}
return ;
}

[HDU5001]Walk的更多相关文章

  1. hdu5001 Walk 概率DP

    I used to think I could be anything, but now I know that I couldn't do anything. So I started travel ...

  2. HDU-5001 Walk (概率DP)

    Problem Description I used to think I could be anything, but now I know that I couldn't do anything. ...

  3. python os.walk()

    os.walk()返回三个参数:os.walk(dirpath,dirnames,filenames) for dirpath,dirnames,filenames in os.walk(): 返回d ...

  4. LYDSY模拟赛day1 Walk

    /* 依旧考虑新增 2^20 个点. i 只需要向 i 去掉某一位的 1 的点连边. 这样一来图的边数就被压缩到了 20 · 2^20 + 2n + m,然后 BFS 求出 1 到每个点的最短路即可. ...

  5. How Google TestsSoftware - Crawl, walk, run.

    One of the key ways Google achievesgood results with fewer testers than many companies is that we ra ...

  6. poj[3093]Margaritas On River Walk

    Description One of the more popular activities in San Antonio is to enjoy margaritas in the park alo ...

  7. os.walk()

    os.walk() 方法用于通过在目录树种游走输出在目录中的文件名,向上或者向下. walk()方法语法格式如下: os.walk(top[, topdown=True[, onerror=None[ ...

  8. 精品素材:WALK & RIDE 单页网站模板下载

    今天,很高兴能向大家分享一个响应式的,简约风格的 HTML5 单页网站模板.Walk & Ride 这款单页网站模板是现代风格的网页模板,简洁干净,像素完美,特别适合用于推广移动 APP 应用 ...

  9. 股票投资组合-前进优化方法(Walk forward optimization)

    code{white-space: pre;} pre:not([class]) { background-color: white; }if (window.hljs && docu ...

随机推荐

  1. HIve实战分析Hadoop的日志

    1.日志格式分析首先分析 Hadoop 的日志格式, 日志是一行一条, 日志格式可以依次描述为:日期.时间.级别.相关类和提示信息.如下所示: -03-06 15:23:48,132 INFO org ...

  2. java使用FileSystem上传文件到hadoop文件系统

    import java.io.FileNotFoundException; import java.io.IOException; import java.net.URI; import org.ap ...

  3. StringBuilder和StringBuffer的区别

    Java中StringBuilder和StringBuffer的区别分析 StringBUilder是线程不安全的(线程同步访问的时候会出问题),但是效率相对较高. (String类型使用加号进行拼接 ...

  4. Java String 对象,你真的了解了吗?

    String 对象的实现 String对象是 Java 中使用最频繁的对象之一,所以 Java 公司也在不断的对String对象的实现进行优化,以便提升String对象的性能,看下面这张图,一起了解一 ...

  5. Docker学习之docker-compose

    docker-compose 安装 1.Mac/Windows: 安装docker的时候附带安装了. 2.Linux: curl https://github.com/docker/compose L ...

  6. [Algorithm] Heap & Priority queue

    这里只是简单的了解,具体内容详见推荐的原链接 注意堆和树的区别 堆就是优先级队列的实现形式 堆排序 排序过程 Ref: 排序算法之堆排序(Heapsort)解析 第一步(构造初始堆): {7, 5, ...

  7. 2020Pycharm安装教程!最新2020pycharm安装!如何安装Pycharm2020版本!如何安装Pycharm!如何安装2020Pycharm!2020Pycharm永久激活!

    本教程仅用作个人学习,请勿用于商业获利,造成后果自负!!! Pycharm安装 在这插一个小话题哈,Pycharm只是一个编译器,并不能代替Python,如果要使用Python,还是需要安装Pytho ...

  8. 简单python爬虫案例(爬取慕课网全部实战课程信息)

    技术选型 下载器是Requests 解析使用的是正则表达式 效果图: 准备好各个包 # -*- coding: utf-8 -*- import requests #第三方下载器 import re ...

  9. idea创建javaweb原生项目

    使用idea创建javaweb项目 idea还是写框架项目比较爽,原生的javaweb项目不是特别方便,这篇文章就是记录一下创建的过程 图较多注意流量 选择创建web项目 配置tomcat服务器 配置 ...

  10. 阿里云搭建nginx + uWSGI 实现 django 项目

    系统版本 CentOS/7 64位 1.安装使用python3 创建python3目录 sudo mkdir /usr/local/python3 进入python3目录 cd /usr/local/ ...