全文参考 《 基于 python 的深度学习实战》

import numpy as np
from keras.datasets import mnist from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers.convolutional import Conv2D, MaxPooling2D (x_train, y_train), (x_test, y_test) = mnist.load_data() print(x_train[0].shape)
print(y_train) ########################### x 处理 ##################################
# 将训练集合中的数字变成标准的四维张量形式(样本数量、长、宽、深(灰度图 1))
# 并将像素值变成浮点格式
width = 28
height = 28
depth = 1
x_train = x_train.reshape(x_train.shape[0], width, height, depth).astype('float32')
x_test = x_test.reshape(x_test.shape[0], width, height, depth).astype('float32') # 归一化处理,将像素值控制在 0 - 1
x_train /= 255
x_test /= 255
classes = 10 ####################### y 处理 #######################################
# one host 编码
def tran_y(y):
y_ohe = np.zeros(10)
y_ohe[y] = 1
return y_ohe # 标签将 one-hot 编码重排
y_train_ohe = np.array([tran_y(y_train[i]) for i in range(len(y_train))])
y_test_ohe = np.array([tran_y(y_train[i]) for i in range(len(y_test))]) ###################### 搭建卷积神经网络 ###############################
model = Sequential()
# 添加卷积层,构造 64 个过滤器,过滤器范围 3x3x1, 过滤器步长为 1, 图像四周补一圈 0, 并用 relu 非线性变换
model.add(Conv2D(filters=64, kernel_size=(3,3), strides=(1,1), padding='same', input_shape=(width, height, 1), activation='relu'))
# 添加 Max_Pooling , 2 x 2 取最大值
model.add(MaxPooling2D(pool_size=(2, 2)))
# 设立 Dropout , 将概率设为 0.5
model.add(Dropout(0.5)) #重复构造, 搭建神经网络
model.add(Conv2D(128, kernel_size=(3, 3), strides=(1,1), padding='same', activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.5))
model.add(Conv2D(256, kernel_size=(3,3), strides=(1, 1), padding='same', activation='relu'))
model.add((MaxPooling2D(pool_size=(2, 2))))
model.add(Dropout(0.5)) # 将当前节点展平, 构造全连神经网络
model.add(Flatten()) # 构造全连接神经网络
model.add(Dense(128, activation='relu'))
model.add(Dense(64, activation='relu'))
model.add(Dense(32, activation='reul'))
model.add(Dense(classes, activation='softmax')) ################################ 编译模型 ##########################
# 一般,分类问题的损失函数才有交叉熵 (Cross Entropy)
model.compile(loss='categorical_crossentropy', optimizer='adagrad', metrics=['accuracy']) ######################### 训练模型 ################################
model.fit(x_train, y_train_ohe, validation_data=(x_test, y_test_ohe), epochs=20, batch_size=128) ######################## 评价模型 ################################
scores = model.evaluate(x_test, y_test_ohe, verbose=0) ######################## 保持模型与权重 ################################
# 保持整个模型(包括结构、权重)
model.save("mnist_model.h5")

keras 学习笔记:从头开始构建网络处理 mnist的更多相关文章

  1. 官网实例详解-目录和实例简介-keras学习笔记四

    官网实例详解-目录和实例简介-keras学习笔记四 2018-06-11 10:36:18 wyx100 阅读数 4193更多 分类专栏: 人工智能 python 深度学习 keras   版权声明: ...

  2. javaSE学习笔记(16)---网络编程

    javaSE学习笔记(16)---网络编程 基本概念 如今,计算机已经成为人们学习.工作.生活必不可少的工具.我们利用计算机可以和亲朋好友网上聊天,也可以玩网游.发邮件等等,这些功能实现都离不开计算机 ...

  3. ArcGIS案例学习笔记2_2_模型构建器和山顶点提取批处理

    ArcGIS案例学习笔记2_2_模型构建器和山顶点提取批处理 计划时间:第二天下午 背景:数据量大,工程大 目的:自动化,批处理,定制业务流程,不写程序 教程:Pdf/343 数据:chap8/ex5 ...

  4. Keras学习笔记

    Keras基于Tensorflow和Theano.作为一个更高级的框架,用其编写网络更加方便.具体流程为根据设想的网络结构,使用函数式模型API逐层构建网络即可,每一层的结构都是一个函数,上一层的输出 ...

  5. Keras学习笔记——Hello Keras

    最近几年,随着AlphaGo的崛起,深度学习开始出现在各个领域,比如无人车.图像识别.物体检测.推荐系统.语音识别.聊天问答等等.因此具备深度学习的知识并能应用实践,已经成为很多开发者包括博主本人的下 ...

  6. 大数据学习笔记——Java篇之网络编程基础

    Java网络编程学习笔记 1. 网络编程基础知识 1.1 网络分层图 网络分层分为两种模型:OSI模型以及TCP/IP网络模型,前者模型分为7层,是一个理论的,参考的模型:后者为实际应用的模型,具体对 ...

  7. keras学习笔记-bili莫烦

    一.keras的backend设置 有两种方式: 1.修改JSON配置文件 修改~/.keras/keras.json文件内容为: { "iamge_dim_ordering":& ...

  8. 学习笔记TF051:生成式对抗网络

    生成式对抗网络(gennerative adversarial network,GAN),谷歌2014年提出网络模型.灵感自二人博弈的零和博弈,目前最火的非监督深度学习.GAN之父,Ian J.Goo ...

  9. Keras学习笔记1--基本入门

    """ 1.30s上手keras """ #keras的核心数据结构是“模型”,模型是一种组织网络层的方式,keras 的主要模型是Sequ ...

随机推荐

  1. Java编程思想:内部类基础部分

    public class Test { public static void main(String[] args) { // Parcel1.test(); // Parcel2.test(); / ...

  2. Java连载6-变量的要求

    一.数据类型的作用 (1)不同的数据有不同的类型,不同的数据类型底层会分配不同的大小的空间 (2)数据类型是指程序在运行阶段应该分配多大的内存空间 二.变量要求 变量中存储的具体的“数据”必须和变量的 ...

  3. 洛谷 P1970 花匠

    题目描述 花匠栋栋种了一排花,每株花都有自己的高度.花儿越长越大,也越来越挤.栋栋决定把这排中的一部分花移走,将剩下的留在原地,使得剩下的花能有空间长大,同时,栋栋希望剩下的花排列得比较别致. 具体而 ...

  4. Java中的Enumeration、Iterable和Iterator接口详解

    前言 在看各类Java书籍或者博文的时候,总是会遇到Enumeration.Iterable和Iterator这三个接口,如果对这几个接口不是很明白的话,总会让自己看着看着就迷惑了,正好这周末,抽空把 ...

  5. Linux C 网络编程——多线程的聊天室实现(服务器端)

    服务器端的主要功能: 实现多用户群体聊天功能(此程序最多设定为10人,可进行更改),每个人所发送的消息其他用户均可以收到.用户可以随意的加入或退出(推出以字符串"bye"实现),服 ...

  6. linux初学者-ftp篇(一)

    linux初学者-ftp篇(一) FTP是文件传输协议,是用于Internet上的控制文件的双向传输.用户可以通过客户机程序从远程主机上下载或者向远程主机上传文件. linux系统中,如果不了解SEL ...

  7. storm trident 的介绍与使用

    一.trident 的介绍 trident 的英文意思是三叉戟,在这里我的理解是因为之前我们通过之前的学习topology spout bolt 去处理数据是没有问题的,但trident 的对spou ...

  8. F#周报2019年第30期

    新闻 Fantomas 3.0 宣告.NET Core 3.0预览版7 .NET Core 3.0预览版7中ASP.NET Core与Blazor的升级 Visual Studio 2019版本16. ...

  9. [填坑] ubuntu检测不到外接显示器

    笔记本是win10+ubuntu18双系统,今天ubuntu(开启nivida独显状态)突然无法连外接屏幕,但切换win10就可以显示. 贴吧找到的简单解决方法,不需要重装驱动,记录分享在这里: su ...

  10. MongoDB与Redis的简单使用

    mongodb 概念解析 SQL术语/概念 MongoDB术语/概念 解释说明 database database 数据库 table collection 数据库表/集合 row document ...