Ubuntu16.04+GTX2070+Driver418.43+CUDA10.1+cuDNN7.6
最近需要用到一台服务器的GPU跑实验,其间 COLMAP 编译过程出错,提示 cuda 版本不支持,cmake虽然通过了,但其实没有找到支持的CUDA架构。
- cv@cv:~/mvs_project/colmap/build$ cmake ..
- ...
- -- Automatic GPU detection failed. Building for common architectures.
- -- Autodetected CUDA architecture(s): 3.0;3.5;5.0;5.2;6.0;6.1;7.0;7.0+PTX
- -- Enabling CUDA support (version: 9.0, archs: sm_30 sm_35 sm_50 sm_52 sm_60 sm_61 sm_70 compute_70)
- ...
- cv@cv:~/mvs_project/colmap/build$ make
- [ %] Automatic rcc for target flann
- [ %] Built target flann_automoc
- [ %] Building CXX object lib/FLANN/CMakeFiles/flann.dir/flann.cpp.o
- [ %] Building C object lib/FLANN/CMakeFiles/flann.dir/ext/lz4.c.o
- [ %] Building C object lib/FLANN/CMakeFiles/flann.dir/ext/lz4hc.c.o
- [ %] Linking CXX static library libflann.a
- [ %] Built target flann
- [ %] Automatic rcc for target graclus
- [ %] Built target graclus_automoc
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/util.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mincover.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/kwayrefine.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/refine.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/ometis.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mmatch.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mutil.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mpmetis.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/balance.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mfm2.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mesh.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/compress.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/initpart.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/subdomains.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/kwayvolfm.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/fortran.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/pmetis.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/kwayfm.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/parmetis.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/coarsen.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mkwayfmh.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mbalance2.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mbalance.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mmd.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/pqueue.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/estmem.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/myqsort.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/kvmetis.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/fm.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/ccgraph.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/minitpart2.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/bucketsort.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/graph.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mrefine2.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/frename.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/stat.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/debug.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/srefine.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/meshpart.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mrefine.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/kwayvolrefine.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/match.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/kmetis.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mkwayrefine.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/metis.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mcoarsen.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/timing.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mfm.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/memory.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/minitpart.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/sfm.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mkmetis.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/separator.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/multilevelLib/wkkm.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/multilevelLib/mlkkm.c.o
- [ %] Linking C static library libgraclus.a
- [ %] Built target graclus
- [ %] Automatic rcc for target lsd
- [ %] Built target lsd_automoc
- [ %] Building C object lib/LSD/CMakeFiles/lsd.dir/lsd.c.o
- [ %] Linking C static library liblsd.a
- [ %] Built target lsd
- [ %] Automatic rcc for target pba
- [ %] Built target pba_automoc
- [ %] Building NVCC (Device) object lib/PBA/CMakeFiles/pba.dir/pba_generated_ProgramCU.cu.o
- CMake Error at pba_generated_ProgramCU.cu.o.cmake: (message):
- Error generating
- /home/cv/mvs_project/colmap/build/lib/PBA/CMakeFiles/pba.dir//./pba_generated_ProgramCU.cu.o
- lib/PBA/CMakeFiles/pba.dir/build.make:: recipe for target 'lib/PBA/CMakeFiles/pba.dir/pba_generated_ProgramCU.cu.o' failed
- make[]: *** [lib/PBA/CMakeFiles/pba.dir/pba_generated_ProgramCU.cu.o] Error
- CMakeFiles/Makefile2:: recipe for target 'lib/PBA/CMakeFiles/pba.dir/all' failed
- make[]: *** [lib/PBA/CMakeFiles/pba.dir/all] Error
- Makefile:: recipe for target 'all' failed
- make: *** [all] Error
colmap_build_error
于是又开始配置环境,首先根据自己机器配置NVIDIA官方网站下载 GeForce 驱动程序
>> 检查机器环境及配置
内核版本及操作系统信息
- cv@cv:~/mvs_project/colmap/build$ uname -r
4.15.0-65-generic- cv@cv:~/mvs_project/colmap/build$ lsb_release -a
- No LSB modules are available.
- Distributor ID: Ubuntu
- Description: Ubuntu 16.04. LTS
- Release: 16.04
- Codename: xenial
- cv@cv:~/mvs_project/colmap/build$ gcc --version
- gcc (Ubuntu 5.4.-6ubuntu1~16.04.) 5.4.
- Copyright (C) Free Software Foundation, Inc.
- This is free software; see the source for copying conditions. There is NO
- warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
已经安装过显卡驱动的机器可以直接通过 nvidia-smi 命令显示显卡型号和驱动版本信息
- cv@cv:~/mvs_project/colmap/build$ nvidia-smi
- Sat Nov ::
- +-----------------------------------------------------------------------------+
- | NVIDIA-SMI 418.43 Driver Version: 418.43 CUDA Version: 10.1 |
- |-------------------------------+----------------------+----------------------+
- | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
- | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
- |===============================+======================+======================|
- | GeForce RTX Off | ::00.0 Off | N/A |
- | % 65C P0 1W / 210W | 0MiB / 7952MiB | % Default |
- +-------------------------------+----------------------+----------------------+
- +-----------------------------------------------------------------------------+
- | Processes: GPU Memory |
- | GPU PID Type Process name Usage |
- |=============================================================================|
- | No running processes found |
- +-----------------------------------------------------------------------------+
对尚未安装过显卡驱动的机器,可以通过 lspci 指令查询,grep -i 的意思是忽略后面匹配项的大小写
- cv@cv:~/mvs_project/colmap/build$ lspci | grep -i vga | grep -i nvidia
- :00.0 VGA compatible controller: NVIDIA Corporation Device 1f07 (rev a1)
这里返回的是一串十六进制代码 1f07,跟我们平常所见略有不同,需要翻译一下,到 PCI devices 查询。打不开网页或者打开很慢的可以参考放在GitHub上的一份常见型号对应表
知道了自己的机器的配置就可以到上面给出的网站(https://www.geforce.cn/drivers)下载对应的驱动程序。
开始安装驱动之前的准备工作
>> 卸载旧版本或安装失败的驱动
- cv@cv:~/mvs_project/colmap/build$ cd
- cv@cv:~$ sudo ./NVIDIA-Linux-x86_64-418.43.run --uninstall
>> 安装可能需要的依赖
- cv@cv:~$ sudo apt update
- cv@cv:~$ sudo apt install dkms build-essential linux-headers-generic
- cv@cv:~$ sudo apt install gcc-multilib xorg-dev
- cv@cv:~$ sudo apt install freeglut3-dev libx11-dev libxmu-dev libxi-dev
- cv@cv:~$ sudo apt install libgl1-mesa-glx libglu1-mesa libglu1-mesa-dev
>> 禁用 NOUVEAU 驱动
直接使用 VIM 打开,没有该文件时自动新建
- cv@cv:~$ sudo vim /etc/modprobe.d/blacklist-nouveau.conf
在文件中添加如下内容,保存退出
- blacklist nouveau
- blacklist lbm-nouveau
- options nouveau modeset=
- alias nouveau off
- alias lbm-nouveau off
然后执行下面的指令,禁用 nouveau 内核模块,更新配置,重启
- cv@cv:~$ echo options nouveau modeset= | sudo tee -a /etc/modprobe.d/nouveau-kms.conf
- cv@cv:~$ sudo update-initramfs -u
- cv@cv:~$ sudo reboot
CTRL+ALT+F1 进入命令行模式,输入下面的命令,如果没有任何显示则表明禁用驱动成功了。然后关闭图形界面,后面要记得重新打开。
- cv@cv:~$ lsmod | grep nouveau
- cv@cv:~$ sudo service lightdm stop
然后开始安装显卡驱动
- cv@cv:~$ chmod a+x NVIDIA-Linux-x86_64-418.43.run
- cv@cv:~$ sudo ./NVIDIA-Linux-x86_64-418.43.run --dkms --no-opengl-files
-dkms 默认开启。在 kernel 自行更新时将驱动程序安装至模块中,从而阻止驱动程序重新安装。
–no-opengl-files 表示只安装驱动文件,不安装OpenGL文件。这个参数不可省略,否则会导致登陆界面死循环。因为NVIDIA的驱动默认会安装OpenGL,而Ubuntu的内核本身也有OpenGL且与GUI显示息息相关,
一旦NVIDIA的驱动覆盖了OpenGL,在GUI需要动态链接OpenGL库的时候就会出现问题。
–no-x-check 表示安装驱动时不检查X服务,非必需,已经禁用图形界面。
–no-nouveau-check 表示安装驱动时不检查nouveau,非必需,已经禁用nouveau驱动。
–disable-nouveau 禁用nouveau。非必需,因为之前已经手动禁用了nouveau。
安装过程中弹出pre-install script failed的信息,继续安装即可,没有影响。
dkms 选项选yes
32位兼容 选项选yes
x-org 选项保持默认选no
安装完成后打开图形桌面。
- cv@cv:~$ sudo service lightdm start
- cv@cv:~$ nvidia-smi
如果有显示GPU相关信息表示驱动安装成功。
卸载CUDA
首先卸载以前安装的或安装失败的CUDA,以便我们顺利进行下面的步骤,直接执行CUDA自带的卸载脚本。
- cv@cv:~$ sudo /usr/local/cuda-9.0/bin/uninstall_cuda_9..pl
卸载完成后,清除残留文件夹。
- cv@cv:~$ sudo rm -rf /usr/local/cuda-9.0/
安装CUDA和CUDNN
>> 首先下载安装文件,我们要安装的是CUDA10.1和CUDNN7.6
根据对应关系到 CUDA 下载页面寻找自己需要的版本,比如我下载的是 CUDA Toolkit 10.1 update2,选择好操作系统,系统架构和安装类型之后下载即可。
到 CUDA Toolkit Archive 网站上下载
cuda_10.1.243_418.87.00_linux.run
然后下载CUDNN,需要注册或登录NVIDIA账号,看清楚版本,到 cuDNN Download 网站上 for CUDA 10.1 下载里面的三个deb安装包
libcudnn7_7.6.5.32-1+cuda10.1_amd64.deb
libcudnn7-dev_7.6.5.32-1+cuda10.1_amd64.deb
libcudnn7-doc_7.6.5.32-1+cuda10.1_amd64.deb
>> 然后开始安装 CUDA
- cv@cv:~$ sudo service lightdm stop
- cv@cv:~$ chmod a+x cuda_10..243_418..00_linux.run
- cv@cv:~$ sudo ./cuda_10..243_418..00_linux.run
是否同意条款 accept
选择安装界面,除了418.87取消勾选之外其他保持默认
剩下的都保持默认即可
然后打开配置文件,并在末尾添加链接路径,保存退出
- cv@cv:~$ vim ~/.bashrc
- export PATH=/usr/local/cuda-10.1/bin:$PATH
- export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
使生效
- cv@cv:~$ source ~/.bashrc
这是应该已经可以查看CUDA安装版本了
- cv@cv:~$ nvcc --version
- nvcc: NVIDIA (R) Cuda compiler driver
- Copyright (c) 20xx-20xx NVIDIA Corporation
- Built on Tue_Jan_10_13::03_CST_20xx
- Cuda compilation tools, release 10.1, V10..x
>> 接着安装 cuDNN
- cv@cv:~$ sudo dpkg -i libcudnn7_7.6.5.-+cuda10.1_amd64.deb
- cv@cv:~$ sudo dpkg -i libcudnn7-dev_7.6.5.-+cuda10.1_amd64.deb
- cv@cv:~$ sudo dpkg -i libcudnn7-doc_7.6.5.-+cuda10.1_amd64.deb
>> 打开图形界面
- cv@cv:~$ sudo service lightdm start
验证安装是否成功
>> CUDA 测试,进入到 CUDA 例程路径下,编译并测试
- cv@cv:~$ cd NVIDIA_CUDA-.1_Samples/
- cv@cv:~/NVIDIA_CUDA-.1_Samples$ make
- cv@cv:~/NVIDIA_CUDA-.1_Samples$ cd bin/x86_64/linux/release/
- cv@cv:~/NVIDIA_CUDA-.1_Samples/bin/x86_64/linux/release$ ./deviceQuery
- ./deviceQuery Starting...
- CUDA Device Query (Runtime API) version (CUDART static linking)
- Detected CUDA Capable device(s)
- Device : "GeForce RTX 2070"
- CUDA Driver Version / Runtime Version 10.1 / 10.1
- CUDA Capability Major/Minor version number: 7.5
- Total amount of global memory: MBytes ( bytes)
- () Multiprocessors, ( ) CUDA Cores/MP: CUDA Cores
- GPU Max Clock rate: MHz (1.71 GHz)
- Memory Clock rate: Mhz
- Memory Bus Width: -bit
- L2 Cache Size: bytes
- Maximum Texture Dimension Size (x,y,z) 1D=(), 2D=(, ), 3D=(, , )
- Maximum Layered 1D Texture Size, (num) layers 1D=(), layers
- Maximum Layered 2D Texture Size, (num) layers 2D=(, ), layers
- Total amount of constant memory: bytes
- Total amount of shared memory per block: bytes
- Total number of registers available per block:
- Warp size:
- Maximum number of threads per multiprocessor:
- Maximum number of threads per block:
- Max dimension size of a thread block (x,y,z): (, , )
- Max dimension size of a grid size (x,y,z): (, , )
- Maximum memory pitch: bytes
- Texture alignment: bytes
- Concurrent copy and kernel execution: Yes with copy engine(s)
- Run time limit on kernels: No
- Integrated GPU sharing Host Memory: No
- Support host page-locked memory mapping: Yes
- Alignment requirement for Surfaces: Yes
- Device has ECC support: Disabled
- Device supports Unified Addressing (UVA): Yes
- Device supports Compute Preemption: Yes
- Supports Cooperative Kernel Launch: Yes
- Supports MultiDevice Co-op Kernel Launch: Yes
- Device PCI Domain ID / Bus ID / location ID: / /
- Compute Mode:
- < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
- deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 10.1, CUDA Runtime Version = 10.1, NumDevs =
- Result = PASS
- cv@cv:~/NVIDIA_CUDA-.1_Samples/bin/x86_64/linux/release$ ./bandwidthTest
- [CUDA Bandwidth Test] - Starting...
- Running on...
- Device : GeForce RTX
- Quick Mode
- Host to Device Bandwidth, Device(s)
- PINNED Memory Transfers
- Transfer Size (Bytes) Bandwidth(GB/s)
- 12.8
- Device to Host Bandwidth, Device(s)
- PINNED Memory Transfers
- Transfer Size (Bytes) Bandwidth(GB/s)
- 13.1
- Device to Device Bandwidth, Device(s)
- PINNED Memory Transfers
- Transfer Size (Bytes) Bandwidth(GB/s)
- 382.0
- Result = PASS
- NOTE: The CUDA Samples are not meant for performance measurements. Results may vary when GPU Boost is enabled.
>> cuDNN 测试
- cv@cv:~$ cat /usr/include/cudnn.h | grep CUDNN_MAJOR -A -m
- #define CUDNN_MAJOR 7
- #define CUDNN_MINOR 6
- #define CUDNN_PATCHLEVEL 5
- cv@cv:~$ cp -r /usr/src/cudnn_samples_v7/ .
- cv@cv:~$ cd cudnn_samples_v7/mnistCUDNN/
- cv@cv:~$ make
- Linking agains cublasLt = true
- CUDA VERSION:
- TARGET ARCH: x86_64
- HOST_ARCH: x86_64
- TARGET OS: linux
- SMS:
- /usr/local/cuda/bin/nvcc -ccbin g++ -I/usr/local/cuda/include -I/usr/local/cuda/include -IFreeImage/include -m64
- -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_50,code=sm_50
- -gencode arch=compute_53,code=sm_53 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61
- -gencode arch=compute_62,code=sm_62 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_72,code=sm_72
- -gencode arch=compute_75,code=sm_75 -gencode arch=compute_75,code=compute_75 -o fp16_dev.o -c fp16_dev.cu
- g++ -I/usr/local/cuda/include -I/usr/local/cuda/include -IFreeImage/include -o fp16_emu.o -c fp16_emu.cpp
- g++ -I/usr/local/cuda/include -I/usr/local/cuda/include -IFreeImage/include -o mnistCUDNN.o -c mnistCUDNN.cpp
- /usr/local/cuda/bin/nvcc -ccbin g++ -m64
- -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_50,code=sm_50
- -gencode arch=compute_53,code=sm_53 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61
- -gencode arch=compute_62,code=sm_62 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_72,code=sm_72
- -gencode arch=compute_75,code=sm_75 -gencode arch=compute_75,code=compute_75 -o mnistCUDNN fp16_dev.o fp16_emu.o mnistCUDNN.o
- -I/usr/local/cuda/include -I/usr/local/cuda/include -IFreeImage/include
- -L/usr/local/cuda/lib64 -L/usr/local/cuda/lib64 -lcublasLt -LFreeImage/lib/linux/x86_64
- -LFreeImage/lib/linux -lcudart -lcublas -lcudnn -lfreeimage -lstdc++ -lm
- cv@cv:~/cudnn_samples_v7/mnistCUDNN$ ./mnistCUDNN
- cudnnGetVersion() : , CUDNN_VERSION from cudnn.h : (7.6.)
- Host compiler version : GCC 5.4.
- There are CUDA capable devices on your machine :
- device : sms Capabilities 7.5, SmClock 1710.0 Mhz, MemSize (Mb) , MemClock 7001.0 Mhz, Ecc=, boardGroupID=
- Using device
- Testing single precision
- Loading image data/one_28x28.pgm
- Performing forward propagation ...
- Testing cudnnGetConvolutionForwardAlgorithm ...
- Fastest algorithm is Algo
- Testing cudnnFindConvolutionForwardAlgorithm ...
- ^^^^ CUDNN_STATUS_SUCCESS for Algo : 0.039040 time requiring memory
- ^^^^ CUDNN_STATUS_SUCCESS for Algo : 0.100576 time requiring memory
- ^^^^ CUDNN_STATUS_SUCCESS for Algo : 0.122400 time requiring memory
- ^^^^ CUDNN_STATUS_SUCCESS for Algo : 0.130560 time requiring memory
- ^^^^ CUDNN_STATUS_SUCCESS for Algo : 0.173888 time requiring memory
- Resulting weights from Softmax:
- 0.0000000 0.9999399 0.0000000 0.0000000 0.0000561 0.0000000 0.0000012 0.0000017 0.0000010 0.0000000
- Loading image data/three_28x28.pgm
- Performing forward propagation ...
- Resulting weights from Softmax:
- 0.0000000 0.0000000 0.0000000 0.9999288 0.0000000 0.0000711 0.0000000 0.0000000 0.0000000 0.0000000
- Loading image data/five_28x28.pgm
- Performing forward propagation ...
- Resulting weights from Softmax:
- 0.0000000 0.0000008 0.0000000 0.0000002 0.0000000 0.9999820 0.0000154 0.0000000 0.0000012 0.0000006
- Result of classification:
- Test passed!
- Testing half precision (math in single precision)
- Loading image data/one_28x28.pgm
- Performing forward propagation ...
- Testing cudnnGetConvolutionForwardAlgorithm ...
- Fastest algorithm is Algo
- Testing cudnnFindConvolutionForwardAlgorithm ...
- ^^^^ CUDNN_STATUS_SUCCESS for Algo : 0.022528 time requiring memory
- ^^^^ CUDNN_STATUS_SUCCESS for Algo : 0.061344 time requiring memory
- ^^^^ CUDNN_STATUS_SUCCESS for Algo : 0.065536 time requiring memory
- ^^^^ CUDNN_STATUS_SUCCESS for Algo : 0.070208 time requiring memory
- ^^^^ CUDNN_STATUS_SUCCESS for Algo : 0.082592 time requiring memory
- Resulting weights from Softmax:
- 0.0000001 1.0000000 0.0000001 0.0000000 0.0000563 0.0000001 0.0000012 0.0000017 0.0000010 0.0000001
- Loading image data/three_28x28.pgm
- Performing forward propagation ...
- Resulting weights from Softmax:
- 0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000714 0.0000000 0.0000000 0.0000000 0.0000000
- Loading image data/five_28x28.pgm
- Performing forward propagation ...
- Resulting weights from Softmax:
- 0.0000000 0.0000008 0.0000000 0.0000002 0.0000000 1.0000000 0.0000154 0.0000000 0.0000012 0.0000006
- Result of classification:
- Test passed!
当这些配置好之后,COLMAP 的编译就很顺利地通过了。
- cv@cv:~/mvs_project/colmap/build$ cmake ..
- -- The C compiler identification is GNU 5.4.
- -- The CXX compiler identification is GNU 5.4.
- -- Check for working C compiler: /usr/bin/cc
- -- Check for working C compiler: /usr/bin/cc -- works
- -- Detecting C compiler ABI info
- -- Detecting C compiler ABI info - done
- -- Detecting C compile features
- -- Detecting C compile features - done
- -- Check for working CXX compiler: /usr/bin/c++
- -- Check for working CXX compiler: /usr/bin/c++ -- works
- -- Detecting CXX compiler ABI info
- -- Detecting CXX compiler ABI info - done
- -- Detecting CXX compile features
- -- Detecting CXX compile features - done
- -- Found installed version of Eigen: /usr/lib/cmake/eigen3
- -- Found required Ceres dependency: Eigen version 3.2. in /usr/include/eigen3
- -- Found required Ceres dependency: glog
- -- Performing Test GFLAGS_IN_GOOGLE_NAMESPACE
- -- Performing Test GFLAGS_IN_GOOGLE_NAMESPACE - Success
- -- Found required Ceres dependency: gflags
- -- Found Ceres version: 1.14. installed in: /usr/local with components: [EigenSparse, SparseLinearAlgebraLibrary, LAPACK, SuiteSparse, CXSparse, SchurSpecializations, OpenMP, Multithreading]
- -- Boost version: 1.58.
- -- Found the following Boost libraries:
- -- program_options
- -- filesystem
- -- graph
- -- regex
- -- system
- -- unit_test_framework
- -- Found Eigen3: /usr/include/eigen3 (Required is at least version "2.91.0")
- -- Found Eigen
- -- Includes : /usr/include/eigen3
- -- Found FreeImage
- -- Includes : /usr/include
- -- Libraries : /usr/lib/x86_64-linux-gnu/libfreeimage.so
- -- Found Glog
- -- Includes : /usr/include
- -- Libraries : /usr/lib/x86_64-linux-gnu/libglog.so
- -- Found OpenGL: /usr/lib/x86_64-linux-gnu/libGL.so
- -- Found Glew
- -- Includes : /usr/include
- -- Libraries : /usr/lib/x86_64-linux-gnu/libGLEW.so
- -- Found Git: /usr/bin/git (found version "2.7.4")
- -- Found Threads: TRUE
- -- Found Qt
- -- Module : /usr/lib/x86_64-linux-gnu/cmake/Qt5Core
- -- Module : /usr/lib/x86_64-linux-gnu/cmake/Qt5OpenGL
- -- Module : /usr/lib/x86_64-linux-gnu/cmake/Qt5Widgets
- -- Found CGAL
- -- Includes : /usr/include
- -- Libraries : /usr/lib/x86_64-linux-gnu/libCGAL.so.11.0.
- -- Build type not specified, using Release
- -- Enabling SIMD support
- -- Enabling OpenMP support
- -- Disabling interprocedural optimization
- -- Autodetected CUDA architecture(s): 7.5
- -- Enabling CUDA support (version: 10.1, archs: sm_75)
- -- Enabling OpenGL support
- -- Disabling profiling support
- -- Enabling CGAL support
- -- Configuring done
- -- Generating done
- -- Build files have been written to: /home/cv/mvs_project/colmap/build
- cv@cv:~/mvs_project/colmap/build$ make
- Scanning dependencies of target flann_automoc
- [ %] Automatic rcc for target flann
- [ %] Built target flann_automoc
- Scanning dependencies of target flann
- [ %] Building CXX object lib/FLANN/CMakeFiles/flann.dir/flann.cpp.o
- [ %] Building C object lib/FLANN/CMakeFiles/flann.dir/ext/lz4.c.o
- [ %] Building C object lib/FLANN/CMakeFiles/flann.dir/ext/lz4hc.c.o
- [ %] Linking CXX static library libflann.a
- [ %] Built target flann
- Scanning dependencies of target graclus_automoc
- [ %] Automatic rcc for target graclus
- [ %] Built target graclus_automoc
- Scanning dependencies of target graclus
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/util.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mincover.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/kwayrefine.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/refine.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/ometis.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mmatch.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mutil.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mpmetis.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/balance.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mfm2.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mesh.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/compress.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/initpart.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/subdomains.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/kwayvolfm.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/fortran.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/pmetis.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/kwayfm.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/parmetis.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/coarsen.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mkwayfmh.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mbalance2.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mbalance.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mmd.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/pqueue.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/estmem.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/myqsort.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/kvmetis.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/fm.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/ccgraph.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/minitpart2.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/bucketsort.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/graph.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mrefine2.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/frename.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/stat.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/debug.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/srefine.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/meshpart.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mrefine.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/kwayvolrefine.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/match.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/kmetis.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mkwayrefine.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/metis.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mcoarsen.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/timing.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mfm.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/memory.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/minitpart.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/sfm.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/mkmetis.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/metisLib/separator.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/multilevelLib/wkkm.c.o
- [ %] Building C object lib/Graclus/CMakeFiles/graclus.dir/multilevelLib/mlkkm.c.o
- [ %] Linking C static library libgraclus.a
- [ %] Built target graclus
- Scanning dependencies of target lsd_automoc
- [ %] Automatic rcc for target lsd
- [ %] Built target lsd_automoc
- Scanning dependencies of target lsd
- [ %] Building C object lib/LSD/CMakeFiles/lsd.dir/lsd.c.o
- [ %] Linking C static library liblsd.a
- [ %] Built target lsd
- Scanning dependencies of target pba_automoc
- [ %] Automatic rcc for target pba
- [ %] Built target pba_automoc
- [ %] Building NVCC (Device) object lib/PBA/CMakeFiles/pba.dir/pba_generated_ProgramCU.cu.o
- Scanning dependencies of target pba
- [ %] Building CXX object lib/PBA/CMakeFiles/pba.dir/ConfigBA.cpp.o
- [ %] Building CXX object lib/PBA/CMakeFiles/pba.dir/CuTexImage.cpp.o
- [ %] Building CXX object lib/PBA/CMakeFiles/pba.dir/pba.cpp.o
- [ %] Building CXX object lib/PBA/CMakeFiles/pba.dir/SparseBundleCPU.cpp.o
- [ %] Building CXX object lib/PBA/CMakeFiles/pba.dir/SparseBundleCU.cpp.o
- [ %] Linking CXX static library libpba.a
- [ %] Built target pba
- Scanning dependencies of target poisson_recon_automoc
- [ %] Automatic rcc for target poisson_recon
- [ %] Built target poisson_recon_automoc
- Scanning dependencies of target poisson_recon
- [ %] Building CXX object lib/PoissonRecon/CMakeFiles/poisson_recon.dir/CmdLineParser.cpp.o
- [ %] Building CXX object lib/PoissonRecon/CMakeFiles/poisson_recon.dir/Factor.cpp.o
- [ %] Building CXX object lib/PoissonRecon/CMakeFiles/poisson_recon.dir/Geometry.cpp.o
- [ %] Building CXX object lib/PoissonRecon/CMakeFiles/poisson_recon.dir/MarchingCubes.cpp.o
- [ %] Building CXX object lib/PoissonRecon/CMakeFiles/poisson_recon.dir/PlyFile.cpp.o
- [ %] Building CXX object lib/PoissonRecon/CMakeFiles/poisson_recon.dir/PoissonRecon.cpp.o
- [ %] Building CXX object lib/PoissonRecon/CMakeFiles/poisson_recon.dir/SurfaceTrimmer.cpp.o
- [ %] Linking CXX static library libpoisson_recon.a
- [ %] Built target poisson_recon
- Scanning dependencies of target sift_gpu_automoc
- [ %] Automatic rcc for target sift_gpu
- [ %] Built target sift_gpu_automoc
- [ %] Building NVCC (Device) object lib/SiftGPU/CMakeFiles/sift_gpu.dir/sift_gpu_generated_ProgramCU.cu.o
- Scanning dependencies of target sift_gpu
- [ %] Building CXX object lib/SiftGPU/CMakeFiles/sift_gpu.dir/FrameBufferObject.cpp.o
- [ %] Building CXX object lib/SiftGPU/CMakeFiles/sift_gpu.dir/GlobalUtil.cpp.o
- [ %] Building CXX object lib/SiftGPU/CMakeFiles/sift_gpu.dir/GLTexImage.cpp.o
- [ %] Building CXX object lib/SiftGPU/CMakeFiles/sift_gpu.dir/ProgramGLSL.cpp.o
- [ %] Building CXX object lib/SiftGPU/CMakeFiles/sift_gpu.dir/PyramidGL.cpp.o
- [ %] Building CXX object lib/SiftGPU/CMakeFiles/sift_gpu.dir/ShaderMan.cpp.o
- [ %] Building CXX object lib/SiftGPU/CMakeFiles/sift_gpu.dir/SiftGPU.cpp.o
- [ %] Building CXX object lib/SiftGPU/CMakeFiles/sift_gpu.dir/SiftMatch.cpp.o
- [ %] Building CXX object lib/SiftGPU/CMakeFiles/sift_gpu.dir/SiftPyramid.cpp.o
- [ %] Building CXX object lib/SiftGPU/CMakeFiles/sift_gpu.dir/CuTexImage.cpp.o
- [ %] Building CXX object lib/SiftGPU/CMakeFiles/sift_gpu.dir/PyramidCU.cpp.o
- [ %] Building CXX object lib/SiftGPU/CMakeFiles/sift_gpu.dir/SiftMatchCU.cpp.o
- [ %] Linking CXX static library libsift_gpu.a
- [ %] Built target sift_gpu
- Scanning dependencies of target sqlite3_automoc
- [ %] Automatic rcc for target sqlite3
- [ %] Built target sqlite3_automoc
- Scanning dependencies of target sqlite3
- [ %] Building C object lib/SQLite/CMakeFiles/sqlite3.dir/sqlite3.c.o
- [ %] Linking C static library libsqlite3.a
- [ %] Built target sqlite3
- Scanning dependencies of target vlfeat_automoc
- [ %] Automatic rcc for target vlfeat
- [ %] Built target vlfeat_automoc
- ...
colmap_build
参考资料
[1] NVIDIA DEVELOPER
[2] CUDA TOOLKIT DOCUMENTATION
[4] 最全面解析 Ubuntu 16.04 安装nvidia驱动 以及各种错误
[6] Ubuntu server16.04安装配置驱动418.87、cuda10.1、cudnn7.6.4.38、anaconda、pytorch超详细解决
[7] Ubuntu 16.04 安装 CUDA10.1 (解决循环登陆的问题)
[8] 【目标检测】Ubuntu16.04+RTX2070+CUDA10.0+pytorch1.1搭建CenterNet环境
Ubuntu16.04+GTX2070+Driver418.43+CUDA10.1+cuDNN7.6的更多相关文章
- 深度学习环境配置:Ubuntu16.04下安装GTX1080Ti+CUDA9.0+cuDNN7.0完整安装教程(多链接多参考文章)
本来就对Linux不熟悉,经过几天惨痛的教训,参考了不知道多少篇文章,终于把环境装好了,每篇文章或多或少都有一些用,但没有一篇完整的能解决我安装过程碰到的问题,所以决定还是自己写一篇我安装过程的教程, ...
- Ubuntu16.04下nvidia驱动+nvidia-docker+cuda9+cudnn7安装
一.宿主机安装nvidia驱动 打开终端,先删除旧的驱动: sudo apt-get purge nvidia* 禁用自带的 nouveau nvidia驱动 sudo gedit /etc/modp ...
- (解决某些疑难杂症)Ubuntu16.04 + NVIDIA显卡驱动 + cuda10 + cudnn 安装教程
一.NVIDIA显卡驱动 打开终端,输入: sudo nautilus 在新打开的文件夹中,进入以下路径(不要用命令行): 左下角点计算机,lib,modules 这时会有几个文件夹,对每个文件夹都进 ...
- ubuntu16.04 安装NVIDIA和CUDA9.2 cudNN7.1
1.安装NVIDIA驱动 (1)查询NVIDIA驱动 首先去官网(http://www.nvidia.com/Download/index.aspx?lang=en-us)查看适合自己显卡的驱动(下载 ...
- 【MindSpore】Ubuntu16.04上成功安装GPU版MindSpore1.0.1
本文是在宿主机Ubuntu16.04上拉取cuda10.1-cudnn7-ubuntu18.04的镜像,在容器中通过Miniconda3创建python3.7.5的环境并成功安装mindspore_g ...
- ubuntu16.04配置tensorflow-gpu环境
1.安装驱动 参考: 史上最全的ubuntu16.04安装nvidia驱动+cuda9.0+cuDnn7.0 https://blog.csdn.net/qq_31215157/article/det ...
- Ubuntu16.04 + CUDA9.0 + cuDNN7.3 + Tensorflow-gpu-1.12 + Jupyter Notebook 深度学习环境配置
目录 一.Ubuntu16.04 LTS系统的安装 二.设置软件源的国内镜像 1. 设置方法 2.关于ubuntu镜像的小知识 三.Nvidia显卡驱动的安装 1. 首先查看显卡型号和推荐的显卡驱动 ...
- Ubuntu16.04安装cuda9.0+cudnn7.0
Ubuntu16.04安装cuda9.0+cudnn7.0 这篇记录拖了好久,估计是去年6月份就已经安装过几遍,然后一方面因为俺比较懒,一方面后面没有经常在自己电脑上跑算法,比较少装cuda和cudn ...
- ubuntu16.04+cuda9+cudnn7+tensorflow+pycharm环境搭建
安装环境:ubuntu16.04+cuda9+cudnn7+tensorflow+pycharm 1)前期搭建过程主要是按照这篇博文,对于版本选择,安装步骤都讲得很详细,亲测有效! https://b ...
随机推荐
- UDP 协议的那点事儿
最近在回顾计算机网络的知识,以前上课没有认真学,只记得几个高大上的术语,所以趁着这次回顾,把学到的知识用博客的形式记录下来,一来加深自己的印象,二来希望让你对这些基础知识有一个更深入的了解.当然,我会 ...
- API规范约定
为了高效开发,节约编写文档的成本,API服务使用Swagger来描述 一.API设计原则 控制API的粒度和数量 命名要遵循简单.可读.统一原则: 优先设计API,然后编码 二.URL设计[针对后端开 ...
- usermod命令、用户密码管理、mkpasswd命令 使用介绍
第3周第2次课(4月3日) 课程内容:3.4 usermod命令3.5 用户密码管理3.6 mkpasswd命令 3.4 usermod命令 usermod可以修改用户的UID和GID 命令使用格式: ...
- vim介绍、颜色显示和移动光标、一般模式下移动光标及复制、剪切和粘贴
第4周第4次课(4月12日) 课程内容: 5.1 vim介绍5.2 vim颜色显示和移动光标5.3 vim一般模式下移动光标5.4 vim一般模式下复制.剪切和粘贴 5.1 vim介绍 centos7 ...
- split分割(拆分)文件
split分割(拆分)文件 需求:指定文件大小拆分文件 # ll -h test/ |grep vmcore -rw-r--r-- 1 root root 12G 12月 7 00:20 vmco ...
- MyBatis开发Dao的原始Dao开发和Mapper动态代理开发
目录 咳咳...初学者看文字(Mapper接口开发四个规范)属实有点费劲,博主我就废了点劲做了如下图,方便理解: 原始Dao开发方式 1. 编写映射文件 3.编写Dao实现类 4.编写Dao测试 Ma ...
- redis数据类型--hash
/** Redis应用之Hash数据类型* 问题1:操作命令* 问题2:存储实现原理和数据结构* 问题3:应用场景* */ 先了解下什么是hash,什么是hash碰撞:hash:是包含键值对的kv的数 ...
- docker的安装及常用命令
一:概述 Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器或Windows 机器上,也可以实现虚拟化,容器是完全使用 ...
- 【原创】(十三)Linux内存管理之vma/malloc/mmap
背景 Read the fucking source code! --By 鲁迅 A picture is worth a thousand words. --By 高尔基 说明: Kernel版本: ...
- [TimLinux] JavaScript AJAX接收到的数据转换为JSON格式
1. 接收数据 AJAX接收数据是通过xhr.responseText属性,这是一个属性不是一个方法,这个属性得到的数据为字符串. 2. 字符串内容 当服务器发送的是一个JsonResponse({' ...