神仙题?反正我是完全想不到哇QAQ

这场AGC真的很难咧\(\times 10086\)

\(\bf Description\)

一张 \(n\) 个点的图,\(i\) 到 \(i+1\) 有连边。

现在来了个Snuke,他会给所有 \((i,j) ,i \ne j\) 连边,如果 \(i<j\) ,边权为 \(-1\) ,否则为 \(1\) 。

然鹅Ringo不想要图里有负环,所以他会删去Snuke加的一些边,使得图中没有负环,删除一条边有个代价,问最小的删边代价。\(3 \leq n \leq 500\)

\(\bf Solution\)

(官方题解是从 \(0\) 标号的,我是从 \(1\) 标号的,所以有一点点不一样)

对于一个没有负环的图,我们可以弄出这样一个数组 \(p\) 满足

  • 对于任意 \(i\) 到 \(j\) 的边,满足 \(p_j \leq p_i + weight(i,j)\),(weight是权值,不是代价)

显然这个 \(p_i\) 是存在的,比如说是 \(1\) 到 \(i\) 的最短路。

然后令 \(q_i=p_i-p_{i+1}\) ,于是

  • 对于一条 \(i → j (i>j)\) 的边,必须满足 \(p_j \leq p_i+1\),即 \(q_j+q_{j+1}+ \cdots + q_{i-1} \leq 1\)
  • 对于一条 \(i → j (i<j)\) 的边,必须满足 \(p_j \leq p_i-1\),即 \(q_i+q_{i+1}+ \cdots + q_{j-1} \geq 1\)

可以发现只用考虑 \(0 \leq q_i \leq 1\)的情况 。

现在问题就简单了,对于一个 \(q\) ,只要把不符合上述条件的边都删掉就行。

用 \(f[i][j]\) 长度为 \(j\) 的数组里最后一个 \(1\) 在 \(j\) ,倒数第二个在 \(i\) ,的最小删边代价。(和官方题解是反的)

当我们从 \(f[i][j]\) 转移到 \(f[j][k]\) 时,要删去这样两种边:

  • \(b → a \ (b>a), i<a \leq j, b>k\) (因为 \(b\) 到 \(a\) 有两个 \(1\) 了所以就不行)
  • \(a → b, j<a<b \leq k\) (因为 \(a\) 到 \(b\) 没有 \(1\) 了所以就不行)

用前缀和就可以 \(O(1)\) 转移啦。

时间复杂度 \(O(n^3)\)

具体实现的话,用 \(w[i][j]\) 表示 \(1 \leq a \leq i , j \leq b \leq n\) ,所有 \(b → a\) 边的权值和

\(vv[i][j]\) 表示 \(i \leq a < b \leq j\) ,所有 \(a → b\) 边的权值和。

预处理一下就可以转移了。

另 \(q_0\) 和 \(q_{n+1}\) 强制为 \(1\) 可以省去对边界的特判。

#include<bits/stdc++.h>
#define LL long long
#define fr(i,x,y) for(int i=(x);i<=(y);i++)
#define rf(i,x,y) for(int i=(x);i>=(y);i--)
#define frl(i,x,y) for(int i=(x);i<(y);i++)
using namespace std;
const int N=505;
const int p=998244353;
int n;
int a[N][N];
LL w[N][N],vv[N][N];
LL f[N][N]; void read(int &x){ scanf("%d",&x); }
void read(LL &x){ scanf("%lld",&x); } LL vwv(int a,int b,int c){
return w[b][c]-w[a-1][c];
} void chkmin(LL &x,LL y){
if (y<x) x=y;
} int main(){
read(n);
fr(i,1,n)
fr(j,1,n)
if (i!=j) read(a[i][j]);
fr(i,1,n)
rf(j,n,i+1){
w[i][j]=w[i][j+1];
fr(k,1,i) w[i][j]+=a[j][k];
}
fr(i,1,n)
fr(j,i+1,n+1){
vv[i][j]=vv[i][j-1];
fr(k,i,j-1) vv[i][j]+=a[k][j];
}
memset(f,0x3f,sizeof f);
f[0][0]=0;
fr(i,0,n)
fr(j,i,n)
if (f[i][j]<1e18){
fr(k,j+1,n+1)
chkmin(f[j][k],f[i][j]+vv[j+1][k]+vwv(i+1,j,k+1));
}
LL ans=1e18;
fr(i,0,n) chkmin(ans,f[i][n+1]);
cout<<ans<<endl;
return 0;
}

AtCoder Grand Contest 036D - Negative Cycle的更多相关文章

  1. Atcoder Grand Contest 036 D - Negative Cycle

    Atcoder Grand Contest 036 D - Negative Cycle 解题思路 在某些情况下,给一张图加或删一些边要使图合法的题目要考虑到最短路的差分约束系统.这一题看似和最短路没 ...

  2. AtCoder Grand Contest 002

    AtCoder Grand Contest 002 A - Range Product 翻译 告诉你\(a,b\),求\(\prod_{i=a}^b i\)是正数还是负数还是零. 题解 什么鬼玩意. ...

  3. AtCoder Grand Contest 012

    AtCoder Grand Contest 012 A - AtCoder Group Contest 翻译 有\(3n\)个人,每一个人有一个强大值(看我的假翻译),每三个人可以分成一组,一组的强大 ...

  4. AtCoder Grand Contest 011

    AtCoder Grand Contest 011 upd:这篇咕了好久,前面几题是三周以前写的... AtCoder Grand Contest 011 A - Airport Bus 翻译 有\( ...

  5. AtCoder Grand Contest 031 简要题解

    AtCoder Grand Contest 031 Atcoder A - Colorful Subsequence description 求\(s\)中本质不同子序列的个数模\(10^9+7\). ...

  6. AtCoder Grand Contest 010

    AtCoder Grand Contest 010 A - Addition 翻译 黑板上写了\(n\)个正整数,每次会擦去两个奇偶性相同的数,然后把他们的和写会到黑板上,问最终能否只剩下一个数. 题 ...

  7. AtCoder Grand Contest 009

    AtCoder Grand Contest 009 A - Multiple Array 翻译 见洛谷 题解 从后往前考虑. #include<iostream> #include< ...

  8. AtCoder Grand Contest 008

    AtCoder Grand Contest 008 A - Simple Calculator 翻译 有一个计算器,上面有一个显示按钮和两个其他的按钮.初始时,计算器上显示的数字是\(x\),现在想把 ...

  9. AtCoder Grand Contest 007

    AtCoder Grand Contest 007 A - Shik and Stone 翻译 见洛谷 题解 傻逼玩意 #include<cstdio> int n,m,tot;char ...

随机推荐

  1. 三个Eclipse下的Debug的使用场景(五)

    本文链接:https://blog.csdn.net/u011781521/article/details/55000066    http://blog.csdn.net/u010075335/ar ...

  2. mysql 分页offset过大性能问题解决思路

    在公司干活一般使用sqlserver数据库.rownumber分页贼好用. 但是晚上下班搞自己的事情就不用sqlserver了.原因就是自己的渣渣1核2g的小服务器完全扛不住sqlserver那么大的 ...

  3. 50个实用的jq代码段整理

    个人博客: http://mcchen.club   1. 如何创建嵌套的过滤器:   //允许你减少集合中的匹配元素的过滤器,   //只剩下那些与给定的选择器匹配的部分.在这种情况下,   //查 ...

  4. Aria2 1.35.0,更新,测试,发布

    在上一篇: 有哪些便宜还好用的东西,买了就感觉得了宝一样? 结尾提到了Tatsuhiro Tsujikawa的aria2计划在10月更新一个新的版本 今天趁着雨后明月挂天,开始了简单的更新 虽然在半年 ...

  5. 简单cookie入侵

    在当前网站,按下F12键进入开发者模式,在console控制台输入:document.cookie获取cookie值如: 复制你得到cookie值,你或通过每种方式获取Cookie,例如:当别人点击你 ...

  6. for循环练习题1——水仙花数

    /*输出所有的水仙花数,所谓水仙花数是指一个3位数,其各个位上数 字立方和等于其本身. 例如: 153 = 1*1*1 + 3*3*3 + 5*5*5 */class ForTest3{ public ...

  7. bugku 各种·绕过

    点开是一段PHP的代码,先来审计一波代码. 发现将uname和passwd用sha1进行了加密,那么我们只要绕过这个函数构造相等就可以了. 可以使这两个值sha1的值相等,但他们本身的值又不等.(想详 ...

  8. 性能测试:Jmeter压测过程中的短信验证码读取

    问题背景 现如今国内的大部分软件或者网站应用,普遍流行使用短信业务,比如登录.注册以及特定的业务通知等. 对于这些业务,在使用Jmeter进行性能测试的过程中,就会需要自动获取和填入短信验证码,否则性 ...

  9. 章节十七章、2- 给执行失败的case截图

    一.案例演示 1.首先我们把截图的方法单独进行封装方便以后调用. package utilities; import java.io.File; import java.io.IOException; ...

  10. python selenium自动化常用关键字

    工具安装: 1.安装python 2.安装selenium库(dos命令下进入selenium-2.53.2存放路径,执行pip install selenium-2.53.2) 3.将浏览器驱动放到 ...